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Abstract 
 

This article provides theoretical foundations for the popular orthonormalised Laguerre 

polynomial (OLP) model of the yield curve, as originally introduced by Nelson and 

Siegel (1987). Intertemporal consistency is provided by deriving the volatility-

adjusted OLP (VAO) model of the yield curve using the risk-neutral Heath, Jarrow 

and Morton (1992) framework, and including an allowance for term premia as noted 

in Duffee (2002).  An economic interpretation is provided by deriving the relationship 

between the VAO model and the Berardi and Esposito (1999) yield curve model that 

is based on a generic general equilibrium model of the economy. In empirical 

applications using almost 50 years of United States data, the VAO model outperforms 

the random walk when used to forecast the yield curve out of sample, and the level of 

the yield curve as measured by the VAO model is shown to be cointegrated with CPI 

inflation, as predicted. 
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1 Introduction

Nelson and Siegel (1987) proposed the original othonormalised Laguerre poly-

nomial (OLP) model of the yield curve. This approach, which is sometimes re-

ferred to and expressed in the linearly equivalent exponential-polynomial form,

has subsequently been extended and revisited in Svensson (1994), Hunt (1995),

Bliss (1997), Mansi and Phillips (2001), Diebold and Li (2002), and Krippner

(2002). OLP models are widely used by researchers and market practitioners

and perform very favourably in comparison with other yield curve models.1

Notwithstanding their popularity, OLP models have two theoretical short-

comings. The first is that OLP models fitted sequentially to cross-sectional

yield curve data cannot be intertemporally consistent, as identified in Björk

and Christensen (1999), Filopovíc (1999a), and Filopovíc (1999b). This leaves

some researchers wary about using the estimated cross-sectional coefficients of

OLP models in a time-series context. The second theoretical shortcoming is

that OLP models lack a fundamental economic foundation. That is, there has

been no formal attempt in the literature to relate the parameters and coefficients

of OLP models back to economic state variables, as is the basis for equilibrium

models of the yield curve.2 This absence of “economic meaning” leaves some

1Bank for International Settlements (1999) notes that ten central banks (of twelve surveyed)
routinely use either the Nelson and Siegel (1987) and/or the Svensson (1994) model as their
primary method for analysing the yield curve. Other examples of the practical application of
exponential-polynomial models are Kacala (1993), Barrett, Gosnell and Heuson (1995), Schich
(1997), Söderlind and Svensson (1997), Brooks and Yong Yan (1999), Monetary Authority of
Singapore (1999), Soto (2001), Schmid and Kalemanova (2002), and Fang and Muljono (2003).
For a comparison to other models, see Dahlquist and Svensson (1996), Seppala and Viertio
(1996), Bliss (1997), Fergusson and Raymar (1998), Ioannides (2003), and Jordan and Mansi
(2003).

2Vasicek (1977) and Cox, Ingersoll and Ross (1985b) are examples of equilibrium models
of the yield curve.
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researchers wary about interpreting the parameters derived from OLP models

in conjunction with economic variables. Together, these factors have resulted

in OLP models being restricted mainly to cross-sectional applications, i.e “yield

curve fitting”.

The theoretical work in this article directly addresses the points raised in

the previous paragraph. Specifically, section 2 derives the volatility-adjusted

OLP (VAO) model of the forward rate curve using the Heath, Jarrow and Mor-

ton (1992) framework, and including an allowance for term premium effects as

noted by Duffee (2002). The VAO model is cross-sectionally and intertempo-

rally consistent by construction, and this dual consistency is exploited to derive

a model for forecasting the yield curve using current yield curve data. Section

3 derives the relationship between the VAO model and the Berardi and Espos-

ito (1999) model of the forward rate curve that is based on a generic general

equilibrium model of the economy. This allows an interpretation of the VAO

model in terms of economic state variables.

The empirical application of the VAO model is to United States yield curve

and inflation data over the period 1954 to 2003. Section 5 investigates the

goodness-of-fit and the predicted time series properties of the VAO model ap-

plied to the full sample of yield curve data, section 6 investigates the ability of

the VAO model to forecast the yield curve out-of-sample, and section 7 inves-

tigates the predicted relationship between inflation and the level of the yield

curve as measured by the VAO model.
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2 The volatility-adjusted orthonormalised Laguerre

polynomial model of the forward rate curve

Section 2 proceeds as follows: section 2.1 defines the framework and terminology

used to derive the VAO model of the forward rate curve, section 2.2 derives the

VAO model, section 2.3 makes several observations about the VAO model, and

section 2.4 explicitly derives the intertemporal relationship implied by the VAO

model.

2.1 A risk-neutral framework and the term premium function

The foundation for a cross-sectionally and intertemporally consistent model of

the entire forward rate curve is the generic risk-neutral relationship provided

by the Heath, Jarrow and Morton (1992) (hereafter HJM) framework. From

equation 26 of the HJM paper, the risk-neutral relationship between the forward

rate curve and the process for the short rate is:

f (0,m) = r (m)−
NX
n=1

Z m

0
αn (s,m) ds−

NX
n=1

Z m

0
σn (s,m) dW̃n (s) (1)

where:

• f (0,m) is the forward rate curve at the initial time, i.e instantaneous

forward rates as a function of maturity m (m ≥ 0);

• r (m) = f (m,m) is the path of the instantaneous short rate as a function

of “future time”/maturity m;
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• N is is the number of independent stochastic processes that effect instan-

taneous random shocks to the forward rate curve and the short rate;

• αn (s,m) = σn (s,m)
£Rm

s σn (s, u) du
¤
is the drift component for the for-

ward rate curve/short rate process n (u is a dummy integration variable

for m, and s is a dummy integration variable for time t as discussed in

section 2.4);

• σn (s,m) is the volatility function for the forward rate curve/short rate

process n; and

• dW̃n (s) are independent Wiener variables under the risk-neutral measure.

Applying the expectations operator as at the initial time, i.e E0, to equation

1 provides an explicit relationship between f (0,m) and E0 [r (m)], the expected

path of the short rate at the initial time, i.e:3

f (0,m) = E0 [r (m)]−
NX
n=1

Z m

0
αn (s,m) ds (2)

Of course, the forward rate curve observed in the “real world” (i.e under

the physical measure) will not necessarily conform to the risk-neutral processes

of equations 1 and 2; the market price or yield of each physical interest rate

instrument may also include premia to compensate for the various risks asso-

ciated with holding that instrument. The main compensation is for expected

interest rate volatility itself, but additional factors may require compensation,

such as inflation/monetary policy regime risks, liquidity risks etc. The approach

3The expectation of the stochastic term in equation 1 is zero; see Ross (1997) pp. 541-542.
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in this article is to collect the physical expression of all risks into a single “term

premium function” δ (m) and add this to equation 2, i.e:

f (0,m) = δ (m) +E0 [r (m)]−
NX
n=1

Z m

0
αn (s,m) ds (3)

This approach is conceptually similar to the “essentially affine” models of

Duffee (2002), in that the shape of the forward rate curve is allowed to con-

tain components that are independent of the expected evolution of the short

rate. Equation 3 shows that the forward rate curve is defined by the term

premium, the expected path of the short rate, and the volatility structure for

the forward rate curve/short rate that defines the “volatility adjustment” termPN
n=1

Rm
0 αn (s,m) ds. The following section specifies structures for these three

components, and thereby defines the forward rate curve.

2.2 The volatility-adjusted OLPmodel of the forward rate curve

The literature on OLP models typically starts from a forward rate curve spec-

ified as f (m) = β1 + β2 · [− exp (−φm)] + β3 · [− exp (−φm) (−2φm+ 1)],4

where φ is a fixed positive constant that alters the rate of the exponential de-

cay, and βn are linear coefficients. Krippner (2002) generalises this functional

form by proposing a linear combination of OLP “modes”,5 which allows the

4For example, the models of Nelson and Siegel (1987), Hunt (1995), Diebold and Li (2002)
are linearly equivalent to this specification. The models of Svensson (1994), Bliss (1997), and
Mansi and Phillips (2001) include additional terms with a different exponential decay rate,
but are analogous to the OLP specification in this article.

5Courant and Hilbert (1953) pp. 93-97, or Rainville and Bedient (1981) pp. 395-396,
contain more information on OLP functions. They are a series of solutions to the second-
order differential equation noted in Courant and Hilbert (1953) pp. 328-331, and members of
such solution sets are commonly referred to as “modes”.
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OLP model be extended as desired. The first three OLP modes are illustrated

in figure 1, and are intuitively named the Level, Slope, and Bow modes based on

their shapes. However, the results in Björk and Christensen (1999), Filopovíc

(1999a), Filopovíc (1999b), and the discussion of section 2.3 of this article show

that OLP specifications of the forward rate curve cannot be intertemporally

consistent.

[ Figure 1 here ]

Rather, an intertemporally consistent model of the forward rate curve can

be constructed using an OLP specification for δ (m)+E0 [r (m)] within equation

3. This article uses the first three OLP modes to develop the model used for

the empirical work, i.e:

δ (m)+E0 [r (m)] = β1+β2·[− exp (−φm)]+β3·[− exp (−φm) (−2φm+ 1)] (4)

Note that each βn is a composite coefficient, i.e βn = γn+λn, where γn is the

term premium component, and λn is associated with the expected evolution of

the short rate. For convenience γn is assumed to be constant, and λn is assumed

to change with a deterministic and stochastic component as time evolves.6 The

evolution of the deterministic components of λn is derived in section 2.4, and

the most analytically tractable representation of the stochastic component of

6A time-varying term premium could readily be allowed for, but would later require extra
terms to allow for the effects of term premium volatility. Empirically, the assumption of a
constant term premium implicitly (and reasonably) assumes that any time-varying components
of the term premium are slow-moving and/or regime dependent, and the dynamics of the yield
curve are primarily due to changes in the expected short rate.
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λn (and hence βn) is an independent and constant Gaussian distribution, i.e

dβn = σn · dW̃n (s) with σn > 0 and dW̃n (s) ∼ N (0, 1), and cov
¡
dβn, dβp

¢
= 0

for n 6= p.7 This means the volatility adjustment term
P3

n=1

Rm
0 αn (s,m) ds

can be written as
P3

n=1 σ
2
n ·hn(φ,m), and it remains to calculate the functional

form for each hn(φ,m).

The results for the first two modes are available in the literature as h1(φ,m) =

1
2m

2, and h2(φ,m) = 1
2φ2
[1− exp (−φm)]2.8 The generic expression for hn(φ,m)

when n > 1 is derived in Appendix A, and the result for the third mode

is: h3(φ,m) =
1
2φ2
[1− exp (−φm)]2 − 1

φ2
[1− exp (−φm)− φm exp (−φm)]2.

These functions are illustrated in figure 2, and may be interpreted as (time-

invariant) volatility adjustments as a function of maturity per unit of variance

in dβn.

[ Figure 2 here ]

Substituting equation 4 and the volatility adjustment results for each of

the three modes into equation 3 gives the three-mode volatility-adjusted OLP

(VAO) model of the forward rate curve that is used in section 5 to fit cross-

sections of yield curve data, i.e:

f(0,m) = β1 + β2 · [− exp (−φm)] + β3 · [− exp (−φm) (−2φm+ 1)]

−σ21 · h1(φ,m)− σ22 · h2(φ,m)− σ23 · h3(φ,m) (5)

7These assumptions are investigated and discussed in section 5.2. Note that instanta-
neous stochastic changes to E0 [r (m)] will be of the form: dE0 [r (m)] = σ1 · dW̃1 (s) + σ2 ·
[− exp (−φm)] · dW̃2 (s) + σ3 · [− exp (−φm) (−2φm+ 1)] · dW̃3 (s).

8See HJM pp. 90-92, or de La Grandville (2001) pp. 368-372. Note that HJM uses the
Slope volatility function exp (−φm/2), so there is a scalar difference between the HJM result
and h2(φ,m) as presented in this article.
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2.3 Observations about the VAO model

Firstly, the results of section 2.2 confirm the result that the forward rate curves

specified with OLP functions cannot be intertemporally consistent within a

risk-neutral setting; the HJM framework specifies that volatility in those OLP

functions will lead to functions with form exp (−2φm) · (4φm)n that are being

ignored in the OLP specification of the forward rate curve.9 This is the essence

of the results in Björk and Christensen (1999), Filopovíc (1999a), and Filopovíc

(1999b).

Secondly, the addition of each hn(φ,m) function within the VAO model may

be seen as a “manifold expansion” analogous to that suggested by Björk and

Christensen (1999) pp. 338-339 to make the Nelson and Siegel (1987) model

consistent with the risk-neutral Hull and White (1990) model. The m2 term in

the VAO model is a “manifold expansion” to account for the effect of volatility

in the Level mode, and this term also occurs in other risk-neutral models that

incorporate constant forward rate volatility for all maturities.10

Thirdly, the VAO model is of the no-arbitrage class in the sense noted by

Brandt and Yaron (2002). That is, if a precise fit to market-observed data

is required, then the number of modes may in principle be increased to equal

the number of instruments. However, as noted by Brandt and Yaron (2002),

the user will often prefer a more parsimonious representation (i.e an approx-

9Except in the (unrealistic) completely deterministic case. That is, with zero volatility, the
volatility adjustment would equal zero, and the initial forward rate curve and the expected
path of the short rate would be identical.
10For example, the Vasicek (1977) model with zero mean-reversion (as noted in Hull 2000

p. 567), the Ho and Lee (1986) model (as noted in Hull 2000, pp. 108 and 572-574), and the
HJM constant volatility model (pp. 90-91).
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imately arbitrage-free model) in conjunction with some well-behaved yield or

price residuals for tractibility, intertemporal consistency, and to allow for the

fact that market-observed data will inevitably contain “measurement errors”.11

2.4 The time evolution of the VAO model coefficients

The HJM framework presented in section 2.1 implicitly assumes that the for-

ward rate curve is observed at time t = 0, and expectations of the path of the

short rate are as at time t = 0. Of course, equation 1 (and its subseqeuent

derivations) also applies to the forward rate curve at time t, i.e f (t,m), and

the expected path of the short rate as at time t, i.e Et [r (t+m)], where Et rep-

resents the expectations operator applied at time t (i.e expectations are formed

using information available up to time t). Introducing a time-increment τ (> 0)

to denote a finite evolution in time from t to t+ τ allows the explicit derivation

of the intertemporal relationship between the expected path of the short rate

at times t and t + τ within the HJM framework. This derivation is contained

in Appendix B, with the essential result that:

Et+τ [r (t+ τ +m)] = Et [r (t+ τ +m)] +
NX
n=1

Z t+τ

t
σn (s,m) dW̃n (s) (6)

For the following, it is convenient to express the expected path of the

short rate from section 2.2 in vector form, i.e: Et [r (t+m)] = [λ (t)]0 g(φ,m),

11The generic OLP specification in Krippner (2002), and the corresponding results for
hn(φ,m) as derived in Appendix A, allows the user to extend the VAO model to give the
precision versus parsimony trade-off that best suits their particular application. Such exten-
sions remain to be investigated in future work.
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where g(φ,m) = {1,− exp (−φm) ,− exp (−φm) (−2φm + 1)}0 and λ (t) =

{λ1 (t) , λ2 (t) , λ3 (t)}0. The stochastic term
PN

n=1

R t+τ
t σn (s,m) dW̃n (s) will

also be of the form [ε (φ, τ)]0 g(φ,m), as noted in Appendix B, and representing

all of the terms in equation 6 in this vector form results in the equality:

[λ (t+ τ)]0 g(φ,m) = [λ (t)]0 g(φ, τ +m) + [ε (φ, τ)]0 g(φ,m) (7)

Introducing the coefficient matrix:

• [Φ (φ, τ)]0=


1 0 0

0 exp (−φτ) 0

0 −2φτ exp (−φτ) exp (−φτ)

;

it may be verified directly that g (φ, τ +m) = [Φ (φ, τ)]0 g (φ,m). This en-

ables the evolution of the expected path of the short rate over the time step τ to

be written as [λ (t+ τ)]0 g(φ,m) = [λ (t)]0 [Φ (φ, τ)]0 g(φ,m)+[ε (φ, τ)]0 g(φ,m).

Factoring out the common term g(φ,m), and then taking the transpose gives

the following result (in column-vector form):

λ (t+ τ) = Φ (φ, τ)λ (t) + ε (φ, τ) (8)

As noted in section 2.2, the actual estimates of β (t) = {β1 (t) , β2 (t) , β3 (t)}0

will also contain a term premium component γ = {γ1, γ2, γ3}0, i.e β (t) =

γ + λ (t). Hence, the equation for the time evolution of the estimated coeffi-

cients β (t) will also require a constant vector, denoted here as −µ, to allow for

the term premium:12

12Written in full, equation 9 is γ + λ (t+ τ) = γ +Φ (φ, τ)λ (t) + ε (φ, τ) =
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β (t+ τ) = −µ+Φ (φ, τ)β (t) + ε (φ, τ) (9)

Equation 9 is a first-order vector autoregression (VAR), and may be used

to predict the time-series properties of the estimated coefficients in section 5.

Firstly, the eigenvalues of Φ (φ, τ) are {1, exp (−φτ) , exp (−φτ)}, suggesting

there is a single unit root in the VAR. The coefficient of 1 in the top-left entry

of Φ (φ, τ) and the block diagonal independence of that entry further identifies

that the unit root should be associated with β1 (t). In the remaining sub-

matrix, the repeated eigenvalues exp (−φτ) are less than 1, and so β2 (t) and

β3 (t) should both be mean-reverting and therefore stationary.

The relationship between the expected path of the short rate and the forward

rate curve from equation 5 provides the link to forecasting the forward rate curve

(and hence the yield curve) from the current yield curve, i.e:

Et [f(t+ τ ,m)] = Et

©
[−µ+ β (t+ τ)]0

ª
g(φ,m)− v0h(φ,m) (10a)

= [−µ+Φ (φ, τ)β (t)]0 g(φ,m)− v0h(φ,m) (10b)

where v =
©
σ21, σ

2
2, σ

2
3

ª0 and h(φ,m) = {h1 (φ,m) , h2 (φ,m) , h3 (φ,m)}0 for the
three-mode VAO model, and v0h(φ,m) is time-invariant. The application of

equation 10b to forecasting the yield curve is contained in section 6.

[I−Φ (φ, τ)]γ +Φ (φ, τ) [γ + λ (t)] + ε (φ, τ), and so −µ = [I−Φ (φ, τ)]γ.
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3 An economic interpretation of the VAO model

Section 3 proceeds as follows: section 3.1 summarises a generic general equilib-

rium approach to modelling the yield curve, and sections 3.2 and 3.3 respectively

show that the real and inflation components of the expected path of the short

rate from that model are naturally approximated by OLP modes. From these

results, section 3.4 discusses the economic interpretation of the generic VAO

model parameters and coefficients.

3.1 A generic general equilibrium approach to modelling the

yield curve

Berardi and Esposito (1999) (hereafter BE) derives a generic affine multifactor

model of the forward rate curve from a general equilibrium model based on

the economic model proposed by Cox, Ingersoll and Ross (1985a). The BE

approach encapsulates all Vasicek-type and Cox-Ingersoll-Ross-type equilibrium

models,13 and many other equilibrium models that have been proposed in the

literature. It also encapsulates the affine multifactor models of Duffie and Kan

(1996) and Dai and Singleton (2000), providing a general equilibrium basis

for those models and explicitly accounting for the separation between real and

nominal variables. The BE generic risk-neutral J-factor process is:

dsj (t) = κj [θj − sj (t)] dt+
q
σ20j + σ21j · sj (t) · dzj (t) (11)

13That is, Gaussian and square root dynamics, respectively. See the original article, Vasicek
(1977), or Hull (2000) p. 567 for a summary of the Vasicek equilibrium model, and the original
article, Cox et al. (1985b), or Hull (2000) p. 570 for a summary of the Cox-Ingersoll-Ross
equilibrium model.
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where, for j = 2 to J :

• sj (t) are the real state variables, representing returns on factors of pro-

duction in the economy. These are constructed from the original state

variables to be mutually uncorrelated, and will change with a determin-

istic and stochastic component as time evolves.

• κj (> 0) is the constant mean-reversion coefficient of the process for sj (t);

• θj (> 0) is the constant long-term value of sj (t);

•
q
σ20j + σ21j · sj (t) is the standard deviation of the stochastic process for

sj (t). The process will be Vasicek-type if σ1j = 0, Cox-Ingersoll-Ross-

type if σ0j = 0, and can be a mixture of both if σ0j and σ1j are non-zero

(with appropriate restrictions to keep σ20j + σ21j · sj (t) positive); and

• dzj (t) are independent Wiener variables.

The j = 1 factor is reserved for an inflation state variable, which will be

discussed in section 3.3. As noted in Berardi and Esposito (1999), the nominal

short rate at any given time is the summation of state variables sj (t), and for

the analysis that follows it is convenient to partition this into inflation and real

components, i.e r (t, s1, s) = s1 (t)+
PJ

j=2 sj (t), where r (t, s1, s) is the nominal

short rate as a function of the inflation state variable s1 (t) and the (J − 1)-

vector of real state variables s (t), and s (t) contributes the real interest rate

component
PJ

j=2 sj (t).
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3.2 The real components of the BE model

The expected path of the real short rate (as distinct from the expected return

from a rolling investment in the short rate that is typically used to derive

the forward rate curve) may be calculated directly from the expectation of

equation 11. That is, applying the expectations operator at time t and using m

to denote “future time” from time t gives the relationship: Et [dsj (t+m)] =

κj [θj − sj (t+m)] dm. This is an ordinary differential equation with solution

sj (t+m) = θj + Aj · exp (−κjm), and the boundary condition at m = 0 is

sj (t) = θj + Aj , so Aj = − [θj − sj (t)]. Therefore, the real component of the

expected path of the short rate may be written as:14

JX
j=2

sj (t+m) =
JX

j=2

θj −
JX

j=2

[θj − sj (t)] · exp (−κjm) (12)

To show the correspondence between equation 12 and the OLP functional

form, first define φ as a central measure of the values of κj for j = 2 to J , i.e

φ =central(κj) (a constant, because κj are constants). Hence, κj = φ (1 +∆j)

with −1 < ∆j < 1,15 and equation 12 may be written equivalently as:

JX
j=2

sj (t+m) =
JX

j=2

θj − exp (−φm) ·
JX

j=2

[θj − sj (t)] · exp (−∆jφm) (13)

Now write each exponential term containing ∆j as a Taylor expansion

14This result, and the analogous result for the inflation component in section 3.3, can also
be derived using the forward rate curve specified by Berardi and Esposito (1999), and adding
the appropriate volatility adjustment calculated using the HJM framework.
15This restriction on ∆j is always possible by construction; in the extreme case, φ could be

defined as max (κj), and then −1 < ∆j ≤ 0 < 1 (since the lower bound for each κj is zero).
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around ∆j = 0 to order N − 2, i.e:16

JX
j=2

sj (t+m) '
JX

j=2

θj − exp (−φm)

×
JX
j=2

[θj − sj (t)]

"
NX
n=2

1

(n− 2)! (−∆jφm)
(n−2)

#
(14a)

=
JX

j=2

θj − exp (−φm) ·
NX
n=2

ωn (t) · (φm)(n−2) (14b)

=
JX

j=2

θj +
NX
n=2

βn (t)

×− exp (−φm)
n−2X
k=0

(−1)k (n− 2)!(2φm)k
(k!)2 (n− 2− k)!

(14c)

where ωn (t) in equation 14b is the collection of the coefficients on powers of

(φm)(n−2) from the full expansion of the double summation in equation 14a, and

equation 14c is a rearrangement of the summation of exponential-polynomials

into a linearly equivalent summation of OLP functions. This is the generic

OLP form noted in Krippner (2002) and Appendix A of this article, but it

may be verified directly that the N = 3 expression of equation 14c is β1 + β2 ·

[− exp (−φm)] + β3 · [− exp (−φm) (−2φm+ 1)], as specified in equation 4.

3.3 The inflation component of the BE model

Berardi and Esposito (1999) uses a single independent factor to represent the

inflation rate in the general equilibrium model. For this factor, each of the

16The residual term
P∞

n=N+1
1

(n−2)! (−∆jφm)
(n−2) associated with the Taylor expansion

approximation will always converge to a finite value, which may be made arbitrarily small,
because |∆j | < 1.

17



parameters in equation 11 are analogous to their real counterparts, although

some are a combination of the relative price level and expected inflation rate

parameters.17 However, the inflation factor has an important analytical dif-

ference to the real factors discussed in section 3.2, because the mean-reversion

coefficient κ1 is much smaller than for the real factors. Indeed, empirical esti-

mates of κ1 from Berardi and Esposito (1999) and Brown and Schaefer (1994)

are distributed above and below zero, and none are statistically different from

zero.18

The expected path of the inflation rate with zero mean-reversion may be

calculated directly from the expectation of the equation 11 with κ1 = 0, i.e

Et [ds1 (t+m)] = 0. This is a trivial ordinary differential equation with solu-

tion s1 (t+m) = A1, and the boundary condition at m = 0 is s1 (t) = A1. The

inflation component of the expected short rate is therefore a constant by matu-

rity, with that constant being the current inflation rate, i.e s1 (t+m) = s1 (t).

3.4 The economic interpretation of the VAO model

The results from sections 3.2 and 3.3 show that the generic N -mode VAO model

is a natural (N − 1)-order approximation to the BE model, i.e the dimension-

ality of the BE model is reduced from J state variables to N factors. The

17Specifically, s1 (t) = π (t) − σ2p; κ1 = κπ; θ1 = θπ − σ2p; and σ1 = σπ, where π (t) is the
expected inflation rate, σ2p is the variance of relative changes in the price level, κπ is the mean-
reversion coefficient for the expected inflation rate, θπ is the long-term expected inflation rate,
and σπ is the standard deviation of the expected inflation rate.
18As noted by Berardi and Esposito (1999), this is consistent with the Fisher hypothesis

that changes in nominal long-maturity rates are determined almost exclusively by changes to
the expected inflation rate. It is also consistent with the general macroeconomic notion of
“sticky prices”, or inflation persistence. Note that κ1 might be non-zero in a regime where
monetary policy is directed toward inflation targeting; this proposition, and the implications
for the VAO model if κ1 is non-zero, remain to be investigated in future work.
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three-mode VAO model specified in this article is therefore a second-order ap-

proximation to the BE model. Four specific observations about the economic

interpretation of the VAO model coefficients and parameters may now be ad-

vanced.

The first observation is the precise relationship β1 (t) = s1 (t) +
PJ

j=2 θj .

Hence, β1 (t) is the BE long-run equilibrium nominal interest rate partitioned as

the BE inflation rate and the BE real long-run equilibrium interest rate (which is

synonomous with the real long-run growth rate). A strict interpretation would

have the BE real long-run equilibrium interest rate constant, and stochastic

changes to β1 (t) should reflect unanticipated changes to s1 (t), i.e simultaneous

and equal “shocks” to current inflation and expected inflation. However, these

relationships are unlikely to be perfectly realised in practice, for several reasons:

(1) the real long-run interest rate might change over time; (2) expected inflation

could differ materially from current inflation, especially in a transition period

(e.g an episode of disinflation); and (3) term premium effects, not considered

in the risk-neutral BE model, might emerge at times. Empirical estimates of

β1 (t) will reflect all of these components as realised in the yield curve data,

while the measure of current inflation will not. However, if each component

cycles over time and any structural changes are appropriately accounted for,

then differences between current inflation and β1 (t) should remain stationary;

i.e current inflation and β1 (t) should be cointegrated with vector (1,-1). This

proposition is investigated in section 7.

The second observation is that the levels of the remaining linear coefficients

βn (t) reflect the values of the (time-varying) BE real state variable vector
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s (t). In particular, when m = 0 there is a precise relationship
PJ

j=2 sj (t) =

−
XN

n=2
βn (t), because all OLP modes equal −1 at a maturity of zero. Hence,

−
XN

n=2
βn (t) is the BE current real interest rate, which should be synonomous

with the current state of the real economy. Stochastic changes to−
XN

n=2
βn (t)

should reflect unanticipated changes to
PJ

j=2 sj (t), or “shocks” to the state of

the real economy. Once again, this is a strict interpretation, and the empirical

relationships in practice remain to be investigated in future work.

The third observation is that the parameter φ in the VAO model should

be constant, and it may be interpreted as a central measure of the mean-

reversion coefficients of the real state variable processes in the BE model, i.e

φ =central(κj). Hence, “shocks” to the real economy should persist with an

average decay rate of φ (i.e a half-life of ln (2) /φ).

The fourth observation is that the empirical significance of higher-order

modes in the VAO model should indicate the relative distribution of ∆j , i.e

the magnitudes of the mean-reversion coefficients for the real state variables

κj relative to central(κj). If higher-order modes in the VAO model quickly

become empirically insignificant, this would suggest that the magnitudes of κj

are generally similar.19

Finally, it is worth noting that reliable empirical relationships between yield

curve data and macroeconomic data have been successfully identified in the

exisiting literature, such as Estrella and Mishkin (1997), Estrella and Mishkin

(1998), Ang and Piazzesi (2003), and Dewachter and Lyrio (2003). The VAO

19The empirical success of three-mode OLP models in many different markets suggests
this is generally the case, but it would be worthwhile specifically investigating the empirical
significance of higher-order modes in the VAO model in future work.
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model in conjunction with the economic interpretations of this section may offer

a less complex avenue for investigating such relationships, and the empirical

work in section 7 touches on this. However, a more complete investigation of

this potential, such as the out-of-sample forecasting of inflation and GDP data,

remains for future work.

4 Description of the data used for the empirical work

To illustrate the general applicability of the VAO model, the empirical work in

sections 5 to 7 addresses yield curve fitting (a financial application), yield curve

forecasting (a financial/economic application), and the predicted relationship

between the Level coefficient and CPI inflation (an economic application).

The data used are obtained from the online Federal Reserve Bank of St

Louis economic database (FRED). The interest rate data are monthly averages

(of business days) of the federal funds rate (FF), and the yields-to-maturity (on

a semi-annual basis) of the 1-year, 3-year, 5-year, 10-year and 20-year constant

maturity bonds (GS1, GS3, GS5, GS10, and GS20, respectively). The sample

period is July 1954 (the first month for which the FF data is available) to Jan-

uary 2003. However, the GS20 data has a gap from January 1987 to September

1993, and so the monthly averages (of business days) of the generic 30-year

bond yield from Bloomberg are used from January 1987 for the remainder of

the sample, with an assumed 30-year constant maturity. The slope measure

used in the empirical analysis is GS10 less FF, being the spread between the

longest and shortest maturity rates available for the entire data period. Figure
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3 plots the FF and GS10 data, and figure 4 plots the FF/GS10 slope measure.

[ Figure 3 here ]

[ Figure 4 here ]

The VAO model β (t) coefficients are used directly as data in some of the

empirical analysis. The methods used to estimate β (t) from market-quoted

interest rate data are documented in the existing literature, but the essential

details are contained in Appendix C for completeness. In summary, the esti-

mation process fits a zero-coupon structure to the observed data for the yield

curve at each point in time. A time series of data for the yield curve results in

a time-series of β (t) coefficients associated with an estimated volatility vector

σ = {σ1, σ2, σ3}. A fixed value of φ is also required for the VAO model, and

the value of φ = 1 was chosen before undertaking any of the empirical analysis,

mainly to avoid any hint of “data mining” in the forecasting application of sec-

tion 6. However, the alternative values of φ = 0.73, as used in Diebold and Li

(2002), and φ = 1.27 were also trialled to establish that the results presented

are not critically dependent on the choice of φ = 1.

The CPI inflation series used in section 7 and plotted in figure 11 is an annual

measure of “core inflation”. This is constructed using the 12 month change in

the logarithm of the CPI for all urban consumers to December 1958, the 12

month change in the the logarithm of the CPI ex-food and energy thereafter

(the latter index first became available in January 1957).20

The four monetary policy regimes noted in the empirical analysis are as

20Hence, this measure is essentially a 12-month moving-average of monthly inflation. Cen-
tering the moving-average or using the monthly series itself makes little difference to the
results noted in section 7.
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specified in Walsh (1998) and Obstfeld and Rogoff (1999). Calendar years are

assumed in all cases, except for the start of the non-borrowed reserves target

regime that was specified to an exact month. The regimes are Bretton Woods

/ gold price target (start of sample to 1971), federal funds rate target (1972

to September 1979), non-borrowed reserves target (October 1979 to 1981, and

borrowed reserves / federal funds rate target (1982 to end of sample). Note that

these regimes were typically associated with the prevailing economic enviroment

at the time,21 and so any sub-sample results should not necessarily be attributed

strictly to the operating regime.

5 The application of the VAO model to the full sam-

ple of yield curve data

Following the outline in Appendix C, the volatility vector σ = {σ1, σ2, σ3} is

first estimated using the full sample of data. That estimate of σ is then used

to estimate the time-series of β (t) coefficients, i.e a value of β (t) associated

with each observation of yield curve data. The yield residuals from each fitting

of yield curve data are used to ascertain the goodness-of-fit of the VAO model,

and the β (t) coefficients are analysed for their in-sample time-series properties.

21For example, the withdrawal from Bretton Woods / gold price targeting was partly associ-
ated with rising US inflation from the late 1960s, as noted in Obstfeld and Rogoff (1999). The
non-borrowed reserves target regime was associated with the disinflation process beginning in
the late 1970s, as noted in Walsh (1998).
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5.1 The goodness-of-fit of the VAO model

Figure 5 shows yield curve data for the month of September 1992 fitted with the

VAO model. This example is actually one of the poorer fits in the sample, but is

selected because the positive Slope and negative Bow reflected in the estimated

coefficients is visually apparent in the yield curve data, thereby illustrating the

intuition behind the estimated cross-sectional coefficients. Figure 6 summarises

the cross-sectional goodness-of-fit of the VAO model through time, and the

wide variation over the sample is readily apparent. Table 1 summarises the

goodness-of-fit of the VAO model using φ = 1, and compares this to VAO

models with alternative values of φ, and to the VAO model using a five-year

centred moving-average window of volatility as discussed in section 5.2. The

differences in the average goodness-of-fit to amount to only several basis points

in most cases.22 The OLP model has often been applied to yield curve fitting,

and so the results for the OLP model with φ = 1 are included in table 1 as a

benchmark. The OLP model fits the cross-sectional data only marginally better

than the equivalent VAO model, which indicates that the constraints required

to make the VAO model intertemporally consistent do not involve a material

cost on the cross-sectional fitting properties relative to the OLP model.

22The insensitivity of goodness-of-fit to the choice of φ in OLP models is already noted in
Nelson and Siegel (1987), Barrett et al. (1995), Diebold and Li (2002). However, note from
table 1 that increasing the value of φ results in a better cross-sectional fit for short-maturity
yields to the detriment of long-maturity yields, and vice-versa. This is to be expected; the
faster exponential decay by maturity associated with a higher value of φ increases the flexibility
to fit short-maturity yields, but that faster decay to zero also effectively leaves only the Level
mode to fit longer-maturity yields.
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5.2 The time series properties of the VAO model coefficients

Figure 7 plots the time series of Slope and Bow coefficients estimated over the

full sample. The time series for the Level coefficient is plotted in figure 11. As

examples of the intuition behind the time-series of cross-sectional coefficients,

note the sharp steepening of the yield curve (i.e an increase in the Slope coef-

ficient) from 1989 to 1992, and the general decline in yields (i.e a decrease in

the Level coefficient) from the 1981 peak.

[ Figure 7 here ]

The derivation of the VAO model assumes independent and constant Gaus-

sian distributions for changes to the βn coefficients, and these assumptions can

now be checked. Figure 8 shows that the null hypothesis of a constant volatility

(i.e the standard deviation of changes) in the Level coefficient over the entire

sample can be rejected, and similar results (and patterns of volatility) are found

for the Slope and Bow coefficients. These results do not invalidate the appli-

cation of the VAO model; unanticipated switching of volatility to a different

constant (as could be argued in this application, given that different levels of

volatility appear to be coincident with different monetary policy regimes) is still

consistent with the VAO model assumptions. However, to ensure the results

are not sensitive to the assumption of constant volatility, the estimation of the

VAO model coefficients over the full sample of data is repeated using a five-

year centred moving-average window of volatility, and changes to the results

are immaterial (as shown in tables 1, 2 and 6).

Regarding the independence of changes to the βn coefficients, figure 9 shows
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that the assumption of zero correlation between changes in Level and Bow

seems reasonable (and the results between Level and Slope are similar), but

the correlations between monthly changes in Slope and Bow are significantly

negative over the entire sample. However, this will not have a material effect in

empirical applications because the Slope and Bow volatility adjustment terms

are very small relative to that for Level volatility (as shown in figure 2).23

Given the evidence for heteroskedasticity noted above (i.e the non-constant

variances of ∆βn), Phillips-Perron unit root tests are applied to the VAO model

coefficients to determine their time-series properties, and the results are sum-

marised in table 2.24 The results are consistent with the predictions in section

2.4; i.e a unit root process cannot be rejected for the Level series, but is rejected

for the Slope and Bow series.

6 Forecasting the yield curve with the VAO model

Section 6.1 investigates the yield curve forecasting potential of the risk-neutral

of the VAOmodel, which is equation 9 with µ = {0, 0, 0}0. Section 6.2 illustrates

the application of the VAO model to yield curve forecasting using an estimated

term premium function.

23 In any case, the zero covariance assumption used in the derivation of the VAO model is a
convenient rather than critical assumption; eigenvector analysis could be used to obtain new
modes as a linear combination of the original OLP modes, where changes in the coefficients
of those new modes would have zero covariance.
24For this and the tests in section 7, the Bartlett window, as specified in Newey and West

(1987), is used to ensure that the calculated variance is positive. The bandwidth of the window
is selected using the method outlined in Newey and West (1994). The levels of significance
are gauged using the critical statistics from Hamilton (1994) pp. 763-756.
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6.1 Forecasting with the risk-neutral version of the VAO model

The steps for forecasting the yield curve as at time t for horizon τ (i.e a forecast

for time t+τ ) are as follows: (1) the estimate of the constant volatility vector σ

as at time t, denoted σ (t), is calculated from the component data using σ2n (t) =

12
t−1

Pt−1
i=0 [∆βn (i)]

2 (where i is a dummy summation variable for historical time,

and the scalar 12 annualises the monthly variances);25 (2) the coefficients β (t)

are estimated using σ (t) and the observation of yield curve data for time t;

(3) the forecast VAO model coefficients for time t + τ , i.e Et [β (t+ τ)], are

calculated using equation 9 with µ = {0, 0, 0}0; and (4) the forecast yields for

the required maturities at time t+ τ are re-constructed using Et [β (t+ τ)] and

the value of σ (t) applied to the forecast date (which is consistent with the

assumption of constant volatility). The forecast bond yields are re-constructed

by assuming they apply to a par bond, i.e with a principal set equal to 1 for

the given maturity, the semi-annual coupons that give a settlement price of -1

are calculated, and the yield forecast is twice that coupon rate. The forecast

FF/GS10 spread is calculated as the GS10 forecast less the FF forecast.

The random walk is the typical näive benchmark used to assess relative

forecasting performance.26 Under the random walk process the yields at time

t+ τ are identical to those prevailing at time t.

25This is the most näive method of recursively updating the estimate of σ from the historical
data available at the time the forecast is made, and was chosen from the outset to avoid any
hint of “data mining” a favourable weighting structure or moving-average window for the
estimate of σ.
26The OLP model has also been successfully used by Diebold and Li (2002) to forecast

the US yield curve, and is another potential benchmark. Using the OLP model with the
data from this article gave results within a few basis points of the VAO model (the results
are not shown due to space limitations, but are available from the author). This suggests
that an intertemporally consistent model is not necessarily a critical requirement for practical
forecasting applications.
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Table 3 contains the root-mean-square (RMS) forecast errors for the VAO

model. To save space, only the results for FF (the shortest maturity yield),

GS10 (the longest maturity yield available over the full sample), and FF/GS10

spread (the widest spread available for the entire sample) are shown; the results

for intermediate maturities and spreads generally fall between these sets of

results. The RMS forecast errors broadly show an increase by horizon, as

expected because the yield curve is subject to more “new information” from

the time of forecast. The magnitudes of the RMS forecast errors in each regime

broadly follow the pattern of volatility in figure 8, also as expected because

higher yield curve volatility should result in larger forecast errors.

Table 4 compares the RMS forecast errors for the VAO model to the random

walk. The statistical significance of each entry is estimated using the Diebold

and Mariano (1995) method with the bandwidth set equal to the horizon of the

forecast (in months) less 1.27 Over the whole sample, the VAO model forecasts

for FF and FF/GS10 outperform those of the random walk, and the magnitude

and significance of the outperformance tends to rise for longer forecast horizons.

However, the VAO model forecasts for GS10 consistently underperform the

random walk over the full sample for all horizons. The sub-period results offers

some insight into the GS10 results; the general outperformance of the VAO

model during the Bretton Woods and federal funds rate target regimes is more

than counterbalanced by the underperformance during the non-borrowed and

27This is the proceedure suggested in Diebold and Mariano (1995) and used in Diebold and
Li (2002), because it allows for overlapping forecasting errors due to the frequency of the data
being greater than the forecast horizon. Note that the small size of the non-borrowed reserves
sub-sample means that statistical significance cannot be ascertained using the Diebold and
Mariano (1995) test, so no indications are given.
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borrowed reserves target regimes. Another interesting aspect during the latter

regime is that the significance of the VAO model forecasts for FF moves from

an outperformance of the random walk for shorter horizons, to an increasing

underperformance for longer horizons.

Further investigation into the poor forecasting performance of the VAO

model during the borrowed reserves regime suggested a term premium effect for

all of the horizons investigated, and so the forecasting excercise was repeated

with an estimated term premium, as discussed in section 6.2.

6.2 Forecasting with a term premium in the VAO model

To illustrate the term premium effect, the forecasting excercise outlined in

section 6.1 is repeated for the one-year horizon over the out-of-sample pe-

riod February 1994 to January 2003. Estimates of the one-year term pre-

mium and σ relevant to this sub-sample are calculated from the historical

period October 1986 to January 1994, i.e σ2n =
12
76

XJan-94

i=Oct-86
[∆βn (i)]

2 and

µ = 1
76

XJan-94

t=Oct-86
{Φ (φ, 1)β (t− 1)− βn (t)}. This estimation period is chosen

because it spans the first full monetary policy cycle (i.e a trough-to-trough cycle

in the federal funds rate, and a full cycle in long—maturity yields) following the

re-establishment of price stability and inflation credibility from around the mid-

1980s. The estimate of the one-year term premium is µ = {0.23,−1.62, 1.43}0

percentage points, and the volatility estimate is σ = {0.84, 1.40, 1.12}0 percent-

age points.

Table 5 firstly shows that all yield forecasts are biased upwards using the

new estimate of σ but setting µ = {0, 0, 0}0. This illustrates the term premium
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effect, which leads to higher RMS forecast errors than for the random walk.

However, allowing for the estimated term premium leads to an approximately

zero bias for all yield forecasts, and the RMS errors for all yield forecasts are

lower than for the random walk. Note that the outperformance of the random

walk is similar to the out-of-sample results of Duffee (2002) using comparable

maturities and horizons (e.g 7.4 basis points for the 10-year rate on a one year

horizon, compared to 7 basis points here), but the VAO model is substantially

less complex than the “essentially affine” models of Duffee (2002). However, the

outperformance is smaller than in Diebold and Li (2002) (e.g 27.4 basis points

for the 10-year rate on a one year horizon), which suggests that the more com-

plex generalised autoregressive conditional heteroskedasticity (GARCH) model

used in that paper might offer an additional avenue for improving yield curve

forecasts.

The shape of the point estimate of the term premium function, i.e µ0g(φ,m),

is illustrated in figure 10. As noted in section 2.1, the term premium is a

physical realisation of the market pricing for all sources of risk, and so it is not

possible to identify why this particular term premium effect has arisen during

the borrowed reserves regime. However, the success of the risk-neutral model

(i.e with no term premium) for forecasting the yield curve during the Bretton

Woods and federal funds target regimes does suggest that the term premium

effects are not present in the earlier part of the sample.
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7 The relationship between the VAO Level coeffi-

cient and CPI inflation

As a simple illustration of the economic interpretation of the VAO model co-

efficients, this section tests the section 3.4 prediction of cointegration between

the VAO level coefficient and CPI inflation. Figure 11 plots CPI inflation and

the Level coefficient of the VAO model, and figure 12 plots the Level coefficient

less CPI inflation. In the latter figure, a potential structural change is apparent

from around the non-borrowed reserves target regime, which coincides with the

beginning of the disinflation period as noted in Walsh (1998). The hypothesis

of structural change in the Level coefficient less CPI inflation series is supported

statistically, i.e regressing that series on a step dummy variable from October

1979 results in a t-statistic of 2.00 (after adjusting for the serial correlation of

residuals), which is within the 5 percent level of significance.

Table 6 shows the results of unit root and cointegration tests. Firstly, a unit

root process cannot be rejected for CPI inflation (as for the Level coefficient

results in table 2). Secondly, the hypothesis that the Level coefficient less CPI

inflation series contains a unit root is weakly rejected. Thirdly, after allowing

for the estimated structural change from October 1979, the hypothesis of a

unit root in the residuals is rejected. Overall, these results indicates that CPI

inflation and the Level coefficient are cointegrated with a vector of (1,-1), and

with more significance when accounting for an estimated structural change from

October 1979.
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8 Conclusion

Since its introduction by Nelson and Siegel (1987), the OLP model of the yield

curve, in various forms, has proved popular with both researchers and market

practioners. The VAOmodel continues the tradition of the OLP model, in being

simple, intuitive, and empirically robust, but makes two important extensions.

Firstly, the VAO model is derived using the Heath, Jarrow and Morton (1992)

risk-neutral framework as a foundation, which ensures cross-sectional and in-

tertemporal consistency. Secondly, the VAO model parameters and coefficients

are shown, via a comparison to the Berardi and Esposito (1999) model of the

forward rate curve developed under a generic general equilibrium framework,

to have a direct economic interpretation.

Using United States data, the empirical work in this article illustrates the

potential of the VAO model in financial and economic applications. For ex-

ample, the VAO model significantly outperforms the random walk when used

to forecast the yield curve. Also, as predicted, CPI inflation is shown to have

a cointegrating relationship with the level of the yield curve as measured by

the VAO model. In both applications there is evidence of a structural change

from around 1979, which coincides with the beginning of the disinflation period

during the non-borrowed reserves monetary policy regime, as noted in Walsh

(1998).

In summary, researchers and market practioners requiring a convenient and

theoretically robust model of the yield curve should find the VAOmodel a useful

tool for a wide variety of applications.
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A The generic volatility-adjustment calculation for

the VAO model

Define an exponential-polynomial volatility function as:

σ (s,m) = σ · exp (−φm) [φm]a (15)

where a (≥ 0) is an integer. Following the approach of HJM, the integralRm
s σn (s, u) du is first calculated as:

σ ·
Z m

s
exp (−φ [m− u]) [φ (m− u)]a du (16a)

= σ ·
·
− 1
φ
Γ [1 + a, φ (m− u)]

¸m
s

(16b)

=
σ

φ
· (−Γ [1 + a, φ (m− s)] + Γ [1 + a, 0]) (16c)

where Γ (·) is the incomplete Gamma function, and is defined as Γ (a, z) =R∞
z wa−1 exp (−w) dw.28 Note that Γ (1 + a, 0) =

R∞
0 za exp (−z) dz = Γ (1 + a) =

a!, the factorial definition, and these expressions are used interchangeably be-

low. Substituting the result from equation 16c into σn (s,m)
£Rm

s σn (s, u) du
¤
ds,

the drift expression component from equation 1, gives:

28See, for example, Wolfram (1996) p. 740.
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σ2

φ
·
Z m

0
(φ [m− s])a exp (−φ [m− s])

× (−Γ [1 + a, φ (m− s)] + a!) ds (17a)

=
σ2

2φ2

h
2a!Γ [1 + a, φ (m− s)]− (Γ [1 + a, φ (m− s)])2

im
0

(17b)

=
σ2

2φ2

h
2a!− (a!)2 − 2a! · Γ [1 + a, φm] + (Γ [1 + a, φm])2

i
(17c)

=
σ2

2φ2
(a!− Γ [1 + a, φm])2 (17d)

To calculate hn(φ,m) for n > 1, the generic OLP volatility function is

written as a summation of exponential-polynomial terms, and the corresponding

results from equation 17d are applied. That is, σn (m) = σn · gn(φ,m) = σn ·

exp (−φm) ·Pn−2
k=0

(−1)k(n−2)!(2φm)k
(k!)2(n−2−k)! = σn ·

Pn−2
k=0

(−2)k(n−2)!
(k!)2(n−2−k)! exp (−φm) [φm]

k,

and therefore:

hn(φ,m) =
1

2φ2
·
n−2X
k=0

(−2)k (n− 2)!
(k!)2 (n− 2− k)!

· (k!− Γ [1 + k, φm])2 (18)

B The time evolution of the expected path of the

short rate in the HJM model

Firstly, rewrite equation 1 for an arbitrary time t, and then apply the expecta-

tions operator at time t to obtain the result:

f (t,m) = Et [r (t+m)]−
NX
n=1

Z t+m

t
αn (s,m) ds (19)
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Introduce a time-increment τ to denote a finite evolution in time from time

t to t+τ , and use equation 19 to specify the following two relationships at times

t and t+ τ :

f (t, τ +m) = Et [r (t+ τ +m)]−
NX
n=1

Z t+τ+m

t
αn (s,m) ds (20a)

f (t+ τ ,m) = Et+τ [r (t+ τ +m)]−
NX
n=1

Z t+τ+m

t+τ
αn (s,m) ds (20b)

Equation 4 in the HJM paper gives the relationship between the forward

rate curve at times t and t+ τ as:29

f (t+ τ ,m) = f (t, τ +m)+
NX
n=1

Z t+τ

t
αn (s,m) ds+

NX
n=1

Z t+τ

t
σn (s,m) dW̃n (s)

(21)

Substituting equations 20a and 20b into equation 21 gives the equality:

Et+τ [r (t+ τ +m)]−
NX
n=1

Z t+τ+m

t+τ
αn (s,m) ds (22a)

= Et [r (t+ τ +m)]−
NX
n=1

Z t+τ+m

t
αn (s,m) ds

+
NX
n=1

Z t+τ

t
αn (s,m) ds+

NX
n=1

Z t+τ

t
σn (s,m) dW̃n (s) (22b)

29Note that m on the left-hand side expression of the forward rate curve and τ + m on
the right-hand side of the forward rate curve refer to the same future point in time, which is
denoted by T in the HJM paper.
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Equation 22b contains two identical integrals with different upper limits of

integration. These may be combined into a single integral with a new lower

limit of integration, i.e:

−
NX
n=1

Z t+τ+m

t
αn (s,m) ds+

NX
n=1

Z t+τ

t
αn (s,m) ds = −

NX
n=1

Z t+τ+m

t+τ
αn (s,m) ds

(23)

This shows that the deterministic drift terms in equations 22a and 22b are

identical. Removing them from both sides of the equality leaves the result:

Et+τ [r (t+ τ +m)] = Et [r (t+ τ +m)] +
NX
n=1

Z t+τ

t
σn (s,m) dW̃n (s) (24)

The individual integrals in the final summation term do not have closed

form solutions. However, the results noted in Ross (1997) pp. 541-542 show

that Et

hR t+τ
t σn (s,m) dW̃n (s)

i
= 0. Also, each integral

R t+τ
t σn (s,m) dW̃n (s)

is a “summation” of σn (s,m) increments, as specified in the initial set-up of

equation 1. Therefore
R t+τ
t σn (s,m) dW̃n (s) will be of the functional form

ε (τ)·σn (s,m), where ε (τ) has an expected value of zero (but will not necessarily

be Gaussian).
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C The empirical application of the VAO model to

market-quoted interest rate data

At each point in time, the VAO model coefficients βn are estimated using the

characteristics and market-quoted data for the fixed interest instruments that

represent the yield curve at that time. Those instruments are typically coupon-

bearing, and so an allowance for multiple cashflows (each with a different zero-

coupon discount rate corresponding to the timing of the cashflow) is required,

i.e:30

Minimise :
KX
k=1

(wk · εk)2 (25a)

where : εk =

J [k]X
j=1

ajk · exp [−mjk ·R (mjk)] (25b)

and : R (m) =
NX
n=1

βn · sn(φ,m)−
NX
n=1

σ2n · un(φ,m) (25c)

where:

• K is the number of fixed interest instruments used to define the yield

curve;

• wk is a weighting factor, which is set to the inverse of the “basis point

value” (i.e the price change of the instrument for a yield change of a single

30This is the most widely used approach for estimating OLP model coefficients from market-
quoted data, and is outlined in Söderlind and Svensson (1997) and the articles in the Bank for
International Settlements (1999). Zero-coupon interest rate data, as used in Diebold and Li
(2002), can also be used within this set-up by specifying just two cashflows for each instrument.
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basis point) in this article to obtain a minimisation of yield residuals (price

residual minimisation is acheived by using equal weights);

• J [k] is the number of cashflows for instrument k;

• ajk is the magnitude of the cashflow j for instrument k (defined to be

negative for the settlement price, and positive for all cashflows beyond

settlement);

• mjk is the maturity of the cashflow j of instrument k; and

• R (mjk) is the zero-coupon interest rate.

Expression 25 is estimated using the the Newton-Raphson technique. The

zero-coupon interest rates in equation 25c are calculated from the VAO model

forward rate curve by integrating the corresponding forward rate components.

That is, R (m) = 1
m

Rm
0 f(m)dm, and so sn(φ,m) =

1
m

Rm
0 gn(φ,m)dm, and

un(φ,m) =
1
m

Rm
0 hn(φ,m)dm. The relevant results for sn(φ,m) and un(φ,m)

in the three-mode VAO model are, respectively:

s1(φ,m) = 1 (26a)

s2(φ,m) =
1

φm
[exp(−φm)− 1] (26b)

s2(φ,m) = − 1

φm
[2φm exp(−φm) + exp(−φm)− 1] (26c)
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u1(φ,m) =
1

6
m2 (27a)

u2(φ,m) =
1

4φ3m
[4 exp (−φm)− 3 + 2φm− exp (−2φm)] (27b)

u3(φ,m) =
1

2φ3m


6 exp (−φm)− 3φm exp (−2φm)

+4φm exp (−φm)− 4 + φm

−φ2m2 exp (−2φm)− 2 exp (−2φm)

 (27c)

In this article, the data used are monthly averages of interpolated constant-

maturity yields on a semi-annual basis, and so the precise cashflows are not

available (i.e the data is essentially an average of bond yields across maturity

and time). Hence, the yield is assumed to correspond to a par bond for the

specified maturity, so the cashflows are a settlement price of -1, a principal

of 1 for the given maturity, and semi-annual coupons between settlement and

maturity equal to half the yield.

Note that φ and the volatility coefficients σn in equation 25c are pre-specified

parameters. φ may be calibrated with regard to historical data, although em-

pirical results are generally insensitive to the exact choice, as noted in section

5.1. σn may be calculated from historical data over a suitable period by annual-

ising the usual definition of variance, i.e σ2n =
12
t

Xt

i=1
[∆βn (i)]

2 is used for the

monthly data used in this article.31 An initial estimate of the β (t) coefficients

to use for this volatility calculation can be obtained by firstly assuming a zero

volatility, i.e σ2n = 0, in equation 25. The estimation of equation 25 is then

31σn could also potentially be calibrated from data for options on interest rate instruments
observed at the same time as the yield curve data, if such data are available.
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repeated using the initial estimates of σ2n to calculate the β (t) coefficients.
32
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Model RMS yield 
residual FF GS1 GS3 GS5 GS10 Cross-

sect. 1 GS20 GT30 Cross-
sect. 2

VAO(φ=1) model 4.7 13.9 10.9 11.8 14.9 10.0 12.4 22.6 10.9
relative to φ=0.73 -3.0 -4.7 -1.6 1.7 0.8 -0.7 2.0 8.2 0.1
relative to φ=1.27 0.9 -0.4 0.4 -4.0 -0.1 -0.7 -2.7 -9.0 -1.5

rel. to φ=1 m/a vol. 0.2 0.7 0.2 -0.3 -0.5 0.3 -0.1 -0.5 0.3
OLP(φ=1) model 4.7 14.2 11.1 9.8 8.1 7.7 12.4 9.9 7.9

Table 1: Yield residual analysis for the φ = 1 VAO model, and a relative
comparison to alternative VAO models; a negative entry (shaded) indicates
that the φ = 1 VAO model has a superior goodness-of-fit to the alterna-
tive. Cross-section 1 is the average of the time-series of cross-sectional RMS
yield residuals for FF to GS10 (the time series plotted in figure 6), and
Cross-section 2 adds either the GS20 and GS30 yield residual to the RMS
calculation. The results for the φ = 1OLP model are shown as a benchmark.

Model Estimated parameters Level Slope Bow
Constant AR1 coefficient 0.995 0.967 0.887
volatility Phillips-Perron statistic -1.75 -3.23 ** -5.81 ***

VAO Window bandwidth 18 17 17
5-year m/a AR1 coefficient 0.995 0.969 0.906
volatility Phillips-Perron statistic -1.69 -3.10 ** -5.13 ***

VAO Window bandwidth 18 18 17

Table 2: Phillips-Perron unit root tests on the time series of the Level co-
efficient plotted in figure 11, and the Slope and Bow coefficients plotted in
figure 7.
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Figure 1: The first three OLP modes with φ = 1.
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Forecast 
horizon 
(years)

Yield or 
spread 

forecast
Full  

sample

Bretton-
Woods / 

gold price 
target

Federal  
funds rate 

target

Non-
borrowed 
reserves 
target

Borrowed 
reserves / 

federal 
funds rate 

target
FF 119 66 134 410 67

0.25 GS10 62 31 34 144 72
FF/GS10 100 53 121 316 71

FF 168 108 208 507 111
0.5 GS10 88 46 47 160 109

FF/GS10 129 82 179 365 89
FF 221 148 270 669 172

1 GS10 129 64 66 272 159
FF/GS10 152 109 219 429 111

FF 259 158 298 655 225
1.5 GS10 158 75 87 348 186

FF/GS10 160 116 230 339 126
FF 284 151 279 400 270

2 GS10 176 83 96 419 203
FF/GS10 163 114 209 43 136

FF 311 155 162 n/a 334
3 GS10 204 105 94 n/a 237

FF/GS10 169 115 166 n/a 148

Monetary policy regime

Table 3: RMS VAO model forecast errors, by horizon and operating regime.
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Figure 2: The first three volatility adjustment functions, hn(φ,m), with φ = 1.
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Forecast 
horizon 
(years)

Yield or 
spread 

forecast
Full  

sample

Bretton-
Woods / 

gold price 
target

Federal  
funds rate 

target

Non-
borrowed 
reserves 
target

Borrowed 
reserves / 

federal 
funds rate 

target
FF -2 3 10 -26 -9 *

0.25 GS10 4 *** -1 ^ 0 2 8 ***
FF/GS10 -5 1 10 -53 0 

FF 0 3 3 16 -13 ^^
0.5 GS10 5 * -2 ^ -2 1 10 **

FF/GS10 -7 -1 -4 -21 -10 ^
FF -9 -9 -38 ^ 108 -13 ^

1 GS10 9 * -4 * -5 4 17 *
FF/GS10 -33 * -10 -64 ^ 43 -35 **

FF -26 ^ -28 ^^ -116 *** 284 4 
1.5 GS10 11 ^^ -5 * -11 ^ 19 26 **

FF/GS10 -60 ** -20 -145 ** 59 -45 ***
FF -38 ^^ -37 ^^ -163 *** 289 21 

2 GS10 13 * -4 ^^ -15 ^^ 45 34 ***
FF/GS10 -75 ** -23 -189 *** -330 -43 ***

FF -46 ^^ -9 -231 *** n/a 47 **
3 GS10 16 ^^ -4 ^ -16 * n/a 50 ***

FF/GS10 -86 ** 19 ^ -202 *** n/a -46 ***

Monetary policy regime

Table 4: RMS VAO model forecast errors less RMS random walk forecast
errors, by horizon and operating regime. A negative entry (shaded) indicates
VAO model outperformance, and ***, **, *, ^^, and ^represent 1, 5, 10,
20, and 40 percent two-tailed levels of significance using the Diebold and
Mariano (1995) method.

Item Forecast 
error

FF GS1 GS3 GS5 GS10 GS30 FF/ 
GS10

No Mean 34 82 88 91 83 14 50
term RMS 123 149 144 136 119 74 109

premium RMS r/t RW -35 ^^ 12 ^ 21 * 24 ** 25 ** 0 -53 *
With Mean -8 -32 -21 5 23 -31 30
term RMS 118 128 116 100 87 78 102

premium RMS r/t RW -40 ^ -9 -7 -11 ^ -7 * 5 -61 **

Table 5: 1994 to 2003 VAO model forecast error analysis for the one-year
horizon. The last line in each block is the RMS VAO model forecast error
less the RMS random walk forecast error; a negative entry (shaded) indicates
VAO model outperformance with levels of significance as noted in table 4.
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figure.
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Figure 4: The time series of the 10-year government bond yield (GS10) less the
federal funds rate (FF), denoted as FF/GS10.

49



-40

-30

-20

-10

0

10

20

30

40

00 03 06 09 12 15 18 21 24 27 30

Maturity in years (m )

Y
ie

ld
 re

si
du

al
 (b

as
is

 p
oi

nt
s)

0

1

2

3

4

5

6

7

8

Y
ie

ld
 (p

er
ce

nt
)

Yield residual (LHS)
Actual yield (RHS)
Fitted yield (RHS)

Figure 5: US yield curve data for t = September 1992, and the cross-sectional
fit of the VAO model. The estimated coefficient vector is β (Sep-92) =
{8.31, 9.19,−4.23}0 percentage points, and the volatility estimate for the full
sample is σ = {0.75, 2.23, 1.85}0 percentage points. The RMS yield residual for
FF to GS10 is 18.9 basis points, which is the September 1992 data point in
figure 6.
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Figure 7: The time series of estimated Slope and Bow coefficients over the full
sample. The volatility estimate for the full sample is σ = {0.75, 2.23, 1.85}0
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Figure 11: The time series of CPI inflation and the estimated Level coef-
ficient over the full sample. The volatility estimate for the full sample is
σ = {0.75, 2.23, 1.85}0 percentage points.
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Figure 12: The time series of the Level coefficient less CPI inflation. The dotted
line is the residuals from the Level coefficient less CPI inflation series regressed
on a step dummy variable from October 1979.
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Unit root test
Model Estimated parameters

CPI inflation Level less 
CPI inflation

Including 
Oct-79 
dummy

Constant AR1 coefficient 0.993 0.987 0.977
volatility Phillips-Perron statistic -2.32 -2.70 * -3.62 **

VAO Window bandwidth 18 18 18
5-year m/a AR1 coefficient 0.993 0.988 0.977
volatility Phillips-Perron statistic -2.32 -2.56 -3.58 **

VAO Window bandwidth 18 18 18

Cointegration tests

Table 6: Phillips-Perron unit root tests on the time series of CPI inflation
plotted in figure 11, and the two Level coefficient less CPI inflation series
plotted in figure 12.
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