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Abstract 
 

This article proposes the orthonormalised Laguerre polynomial (OLP) model of the yield 

curve, a generic linear model that is both cross-sectionally consistent (that is, it reliably 

fits the yield curve at a given point in time), and inter-temporally consistent (that is, the 

cross-sectional parameters are shown to be consistent over time within the expectations 

hypothesis framework). The OLP model generalises the exponential-polynomial model 

for a single yield curve, as originally proposed by Nelson and Siegel (1987), and also 

allows for the simultaneous modelling of other same-currency yield curves that have 

instrument-specific differences (such as default risk), as in Houweling, Hoek and 

Kleibergen (2001).  New Zealand data is used to illustrate the empirical application of the 

OLP model. 
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1 Introduction

Numerous models of the yield curve have evolved over past decades, essentially

paralleling the increasing sophistication and variety of applications required by

practitioners in modern financial markets. A popular group is that of parsimo-

nious parametric cross-sectional models of the yield curve. These are applied to

yield curve data observed at a point in time primarily to gauge a smooth and

continuous function of yields by maturity, which may then be used for pricing

purposes and/or gauging market interest rate expectations.

The literature on cross-sectional models is large. Broad classes (and recent

examples) include ad-hoc functional forms (Echols and Elliot 1976), spline-

based approaches (Lin 2002), orthogonal component approaches (Pham 1998),

approaches based on equilibrium models of the yield curve (Hördahl 2000), and

exponential-polynomial functional forms (i.e an exponential decay by maturity

multiplied by a polynomial in maturity). The exponential-polynomial approach

is originally proposed in Nelson and Siegel (1987), and is extended and revisited

in Svensson (1994), Hunt (1995), Bliss (1997), Mansi and Phillips (2001), and

Diebold and Li (2002). Models of this type are widely used by yield curve

practitioners,1 and perform very favourably in comparison with other yield

curve models.2

Notwithstanding the large body of literature, a key issue that has long

1Bank for International Settlements (1999) notes that ten central banks (of twelve surveyed)
routinely use either the Nelson and Siegel (1987) and/or the Svensson (1994) model as their
primary method for analysing the yield curve. Kacala (1993), Barrett, Gosnell and Heuson
(1995), Schich (1997), and Söderlind and Svensson (1997) are further examples of the practical
application of exponential-polynomial models.

2See, for example, Dahlquist and Svensson (1994), Seppala and Viertio (1996), Bliss (1997),
and Fergusson and Raymar (1998).
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been over-looked in cross-sectional models is the explicit investigation of inter-

temporal consistency. That is, given that the yield curve should embody ex-

pectations about the evolution of interest rates, the cross-sectional parameters

used to describe the yield curve at each point in time should also be consistent

with the expected evolution of those parameters over time. Secondly, with the

notable exception of Houweling, Hoek and Kleibergen (2001), cross-sectional

models have concentrated on modelling single yield curves, rather than simulta-

neously exploiting the additional information contained in same-currency yield

curves that differ only by instrument-specific qualities, such as default-risk.

Thirdly, proposed cross-sectional models tend to be prescriptive, rather than a

generic class of model that may be extended as required.

This article proposes the orthonormalised Laguerre polynomial (OLP) model

of the yield curve, which specifically addresses each of the issues noted in the

previous paragraph. The article proceeds as follows: section 2 formalises the

original Nelson and Siegel (1987) approach within the systematic class of or-

thonormalised Laguerre polynomials.3 This allows the number of factors in

a model for the base yield curve to be extended arbitrarily, as per the cross-

sectional fit required by the user. Section 2.4 proposes a spread function for the

OLP model that allows for the simultaneous estimation of other same-currency

yield curves that are related to the base yield curve by a “spread function”.

Section 3 illustrates the practical application of the OLP model in its cross-

sectional sense to New Zealand yield curve data, and also calibrates several

3Nelson and Siegel (1987) notes the potential for generalising to higher-order models using
Laguerre functions. However, to the knowledge of the author, this has not yet been investi-
gated in the literature.
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parameters to facilitate the routine ongoing application of the model to New

Zealand market data. Section 4 investigates the inter-temporal consistency of

the OLP model specified in section 3 using the expectations hypothesis of the

yield curve. This analysis predicts a convenient and sensible time-series repre-

sentation for the OLP parameters. Section 5 reports the results of empirical

tests against the theoretical predictions of the time-series model, again using

New Zealand data. The conclusion suggests potential applications for the OLP

model, and identifies areas for further related work.

2 The orthonormalised Laguerre polynomial model

of the yield curve

This section firstly summarises orthonormalised Laguerre polynomials as a

generic class of functions, and then proceeds to use them as the basis for the

proposed generic model of the yield curve, including an allowance for spread

functions. The final sub-section discusses the practicalities of estimating the

model parameters.

2.1 Laguerre and orthonormalised Laguerre polynomials

As noted in standard texts,4 Laguerre polynomials are of the form:

Ln(x) =
nX

k=0

(−1)k n!xk
(k!)2 (n− k)!

(1)

4See, for example, Courant and Hilbert (1953) pages 93 to 97, and Rainville and Bedient
(1981) pages 395 to 396.
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where n and k are integers.

Laguerre polynomials do not by themselves form an orthonormal set, but

the related set of functions ϕn(x) = exp (−x/2)Ln(x) are orthonormal for the

interval 0 ≤ x < ∞. Hereafter, expressions of the form ϕn(x) are called

orthonormalised Laguerre polynomials (OLPs), and the first three OLPs are

ϕ0(x) = exp (−x/2)·1, ϕ1(x) = exp (−x/2)·(−x+ 1), and ϕ2(x) = exp (−x/2)·¡
1
2x
2 − 2x+ 1¢.

2.2 The OLP model for the forward rate curve

The generic OLP model for the forward rate curve is simply a linear combi-

nation of a constant and the specified number of OLPs, with some convenient

reparameterisation. Specifically:

f(t,m) =
NX
n=1

βn (t) · gn(φ,m) (2)

where:

• f(t,m) is the instantaneous forward rate curve as a function of maturity

m (in years), observed at time t;

• N is the number of linear parameters in the OLP model;

• βn (t) are the linear parameters, at time t, associated with the functions

of maturity gn(φ,m), where n denotes each individual parameter and its

associated function;

• g1(φ,m) = 1, and gn(φ,m) = −ϕn−2(2φm) for n > 1; and
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• φ is a fixed positive constant (which is responsible for the “natural shape”

of the yield curve components for n > 1, since it alters the rate of decay

of the exponential term in ϕn−2(2φm)).

The functions gn(φ,m) may be referred to as forward rate “modes”,5 and

convenient descriptive names for the first four modes are Level, Slope, Bow,

and Wave. These modes are specified in equations 3a to 3d, and are illustrated

in figure 1.

g1(φ,m) = 1 (3a)

g2(φ,m) = − exp (−φm) (3b)

g3(φ,m) = − exp (−φm) (−2φm+ 1) (3c)

g4(φ,m) = − exp (−φm) (2 [φm]2 − 4φm+ 1) (3d)

[ Figure 1 here ]

An equivalent and often more convenient expression of the generic OLP

model is the vector form:

f(t,m) = [βN (t)]
0 g(φ,m) (4)

where:

5The term “mode” is analogous to its use in physics, where it refers to an integer-related se-
ries of solutions to a second-order differential equation. For example, the modes of a tensioned
string (a one-dimensional wave equation) are individual musical notes and their harmonics.

OLPs are solutions of the second-order differential equation; xd
2ϕn(x)

dx2
+ dϕn(x)

dx
+ (n + 1

2
−

x
4 )ϕn(x) = 0. See Courant and Hilbert (1953) pages 328 to 331.
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• βN (t) is the N -vector containing the N coefficients βn (t);

• g(φ,m) is the N -vector function containing the N modes gn(φ,m).

2.3 The OLP model for the interest rate curve

The generic OLP model for the interest rate curve may be expressed as a linear

combination of interest rate modes, i.e:

R(t,m) =
NX
n=1

βn (t) · sn(φ,m) (5a)

= [βN (t)]
0 s(φ,m) (5b)

where:

• R(t,m) is the continuously compounding interest rate for maturity m,

observed at time t;

• sn(φ,m) are the interest rate modes associated with their respective for-

ward rate modes; and

• s(φ,m) is the N -vector function containing the N modes sn(φ,m).

The interest rate modes are obtained from the corresponding forward rate

modes in the usual manner, i.e sn(φ,m) = 1
m

Rm
0 gn(φ,m)dm. The first four

interest rate modes are specified in equation 6 and are illustrated in figure 2:6

6The application of L’Hôpital’s rule shows that equations 6b to 6d are properly defined at
m = 0, with values of -1. They are also properly defined in the limit of infinite maturity, with
values of zero.
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s1(φ,m) = 1 (6a)

s2(φ,m) =
1

φm
[exp(−φm)− 1] (6b)

s3(φ,m) = − 1

φm
[2φm exp(−φm) + exp(−φm)− 1] (6c)

s4(φ,m) =
1

φm

h
2 [φm]2 exp(−φm) + exp(−φm)− 1

i
(6d)

[ Figure 2 here ]

2.4 Allowing for yield spreads in the OLP model

The discussion so far has implicitly assumed that, for a given currency, the

yield on any interest rate instrument is only a function of the maturity of that

instrument. However, this will not generally be the case if some instruments

differ in other respects that influence their market value and hence their market

yield. The most obvious example of such a difference is the default risk of

the instrument issuer, but other factors such as relative instrument liquidity,

coupon/tax effects, and market structure (such as “on-the-run” and “off-the-

run” Treasury securities in the United States) may also cause a material yield

difference even for interest rate instruments with identical maturities.

When modelling groups of interest rate instruments that have different in-

trinsic properties, Houweling, Hoek and Kleibergen (2001) advocates the joint

estimation of the base yield curve with spread functions to allow for yield curves

that sit above the base yield curve.7 As noted in Houweling et al. (2001), the

7Those authors model the base yield curve as a cubic spline, and the spread function as a
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advantage of this approach is that “appropriate” restrictions may be applied

to the spread functions; i.e the spread functions should equal zero at m = 0,

they should be “smooth”, and they should be approximately monotonically

increasing, since this accords with the stylised facts, empirical evidence, and

theoretical models.8

The spread function proposed here for the OLP model is very simple:

1 − ϕ0(2φm) satisfies all of the restrictions noted in the previous paragraph.

Hence, the forward rate spread mode may be expressed as:

gN+l(φ,m) =


0 if cashflow is not from spread group l

1− exp (−φm) if cashflow is from spread group l

(7)

where l ranges from 0 to L, with L being the number of different yield curves

related to the base yield curve by a spread function (so l = 0 represents the

base yield curve). Figure 3 illustrates the forward rate spread mode, and the

associated interest rate spread mode, which is:

sN+l(φ,m) =


0 if c/flow is not from s/g l

1 + 1
φm [exp (−φm)− 1] if c/flow is from s/group l

(8)

[ Figure 3 here ]

In this sense, the spread function may be regarded as a “dummy variable”,

quadratic spline.
8The instruments must be of a relatively high credit rating for these properties to apply.

See, for example, Jarrow, Lando and Turnbull (1997), and Helwege and Turner (1999).
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and efficiency should be obtained in empirical applications due to the simul-

taneous estimation of the base yield curve parameters that are common to all

yield curves of the same currency.

2.5 The OLP(N,L) model

Adopting the notation that the number of modes in the base yield curve is N ,

and that an additional L spread functions are denoted using an index added to

N , all forward rates and interest rates are respectively defined by the OLP(N,L)

model as:

f(t,m) =
£
βN+L (t)

¤0
g(φ,m) (9)

R(t,m) =
£
βN+L (t)

¤0
s(φ,m) (10)

where the (N + L)-vectors g(φ,m) and s(φ,m) now contain N modes and L

spread functions.

The OLP model for the base yield curve may be extended to an arbitrary

number of modes, as required by the user. Forward rate modes for n > 4

are readily obtainable by following the specifications in sections 2.1, and the

corresponding interest rate modes are readily obtainable from the forward rate

modes, as in section 2.3, using software packages that allow for symbolic com-

putation.9 Similarly, the spread mode in section 2.4 may be applied to an

9For example, the empirical analysis in this article also uses the N = 5 “Ripple” mode.
There does not appear to be a simple analytical or summation expression for the interest
rate modes by n. However, the existence of analytical expressions for the interest rate modes
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arbitrary number of different yield curves related to the base yield curve, as

with the general specification in Houweling et al. (2001).

Note that the exponential-polynomial models of Nelson and Siegel (1987)

and Diebold and Li (2002) are mathematically equivalent to the OLP(3, 0)

model, and the specification by Hunt (1995) is equivalent to the OLP(2, 0)

model. The models of Svensson (1994), Bliss (1997), Mansi and Phillips (2001)

do not have an exact OLP(N,L) analogue, since those models include expo-

nential terms with two different rates of decay.10

2.6 Numerical estimation of the OLP model

The numerical estimation of the OLP model may be undertaken by minimising

the squared residuals of the net present value of the fixed interest instruments

represented by the yield curve data, i.e:

Minimise:
KX
k=1

wk ·
©
εk
£
βN+L (t) , φ

¤ª2 (11a)

subject to: εk [·] =
J [k]X
j=1

ajk exp
³
−mjk ·

£
βN+L (t)

¤0
s(φ,mjk)

´
(11b)

where:

is guaranteed using integration by parts, since the polynomial factors of the forward rate
modes will terminate at zero under repeated differentiation, and the exponential factor is
well-behaved under repeated integration.
10The OLP approach here could easily be extended to include different rates of exponential

decay, but this would have direct implications for the analysis on inter-temporal consistency
in sections 4 and 5. In any case, empirical cross-sectional comparisons of the Nelson and Siegel
(1987) model against the alternatives show a questionable benefit for the addition of extra
parameters. See, for example, Svensson (1994), Schich (1997), and Bank for International
Settlements (1999).
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• K is the number of fixed interest instruments used to define the yield

curve/s;

• wk is a weighting factor (which may be set to 1 if no weighting is required);

• εk
£
βN+L (t) , φ

¤
is a defined function of βN+L (t) and φ, given the cash-

flows defined in equation 11b;

• J [k] is the number of fixed cashflows for instrument k;

• ajk is the magnitude of the cashflow j of instrument k (defined to be

negative for the settlement price, and positive for all cashflows beyond

settlement); and

• mjk is the maturity of the cashflow j of instrument k.

As noted in Söderlind and Svensson (1997), this is a standard approach

to empirically estimating yield curve models using data for coupon-bearing in-

struments, but one subtle difference in the above formulation is to include the

settlement price as one of the defined cashflows. This simplifies the functional

form for the minimisation, and also retains market-standard settlement conven-

tions rather than implicitly assuming that settlement occurs on the date that

the yield curve data is observed.11

The nature of the functions used in the OLP model means that the es-

timation process may be conveniently undertaken using the Newton-Raphson

method to optimise βN+L (t) for a given φ. If φ is also to be freely estimated

11For example, market-quoted yields for New Zealand bonds assume settlement in two
working days. The settlement price is defined by applying a market-standard bond pricing
formula to the market-quoted yield.
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for each cross-section of data (as with the intermediate step in section 3 to cali-

brate the value of φ), then the estimation may proceed in two-steps; a bisection

search method for φ in conjunction with the Newton-Raphson method to find

β for the given φ at each step of the bisection.12

Note that empirical work using exponential-polynomial models sometimes

reports convergence problems in empirical estimation.13 This was not evident

in any of the applications that follow, and each cross-sectional estimation took

less than one second on an office-standard computer, which suggests that the

orthonormality of the OLP modes contributes to empirical robustness and effi-

ciency.

3 The empirical application of the OLP model to

New Zealand data

Having proposed the generic form of the OLP model, this section illustrates the

empirical application to New Zealand government-risk and bank-risk yield data.

Using the terminology of section 2.5, the appropriate model is the OLP(N, 1),

where the government-risk yield curve data is represented by N modes, and the

bank-risk yield curve data is modelled simultaneously as a single spread curve

relative to the government-risk yield curve (so L is fixed at 1).

Apart from providing a practical example of the general application of the

OLP model, the aim is to calibrate values for N and φ while retaining an

12The articles for Canada and France in Bank for International Settlements (1999) describe
similar two-step processes.
13See, for example, Hunt (1995), and Bank for International Settlements (1999).
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adequate representation of each observation of yield curve data over the sample

period. Fixing these parameters creates a linear model suitable for ongoing

routine practical use, and a feasible example for the later work on inter-temporal

consistency. The calibration of φ also has prior empirical support in Nelson and

Siegel (1987), Barrett et al. (1995), and Diebold and Li (2002) (for United States

data, with values of 7.30, 0.33, and 1.37, respectively).

3.1 Description of the data

The data are daily end-of-day market-quoted mid-rates for government-risk

and bank-risk instruments for the period 10 July 1997 to 21 February 2002, as

obtained from the Reserve Bank of New Zealand. The overnight cash-rate /

Official Cash Rate (OCR) data are included in both the government-risk and

bank-risk yield curve data groups, since it proxies the 1-day rate in both cases.14

The government-risk instruments are all liquid nominal government bonds

that were on issue at the start of the data period, and those issued during

the data period. Government bond yields with less than one year to maturity

were excluded automatically in all cases for the reason that these bonds have

the potential to, and often do, become “squeezed” (i.e “cornered” by several

market participants) when they fall into the typical money-market maturity

range.15 The April 2003 bond was also excluded from 14 November 2001, since

it was apparent at the time that it had became significantly squeezed, which

14An indicative interbank overnight cash-rate was compiled by the Reserve Bank up to 16
March 1999, and the OCR has been set by the Reserve Bank since 17 March 1999.
15Specifically allowing for the costs of repurchase transactions on these bonds may in prin-

ciple avoid any “distortions” due to squeezes. However, reliable repurchase quotes are often
not available for the New Zealand market, so exclusion is the only practical remedy.
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soon led to an effective absence of market price-making in that bond.

The bank-risk instruments include 1 to 6-month bank-bill yields for the

entire period, 1 to 7-year semi-annual swaps yields up to 26 September 1997,

and to 10-years from 29 September (the date when a broker quote was first

available for that maturity).

In summary, the data covers 1164 trading days; each trading day has data for

a minimum of 20 instruments and a maximum of 22 instruments; the minimum

number of government-risk instruments is seven; and the minimum number of

bank-risk instruments is 14.

3.2 Applying the OLP model to the data

Figure 4 illustrates an example of the OLP(3, 1) yield curve, with φ = 1, fitted to

a cross-section of actual data. This example is chosen since the sharply opposing

values of the Slope and Bow parameters nicely illustrate their intuitiveness; i.e

the yield curve at this point in time may be described as “upwardly sloped”

and “downwardly bowed”. Figure 5 illustrates the associated yield and price

residuals, which are used to gauge the goodness of fit for that cross-section.

The maximum absolute price residual for this cross section is $5,519, which

is associated with the 15 July 2013 government bond. Note that since the

estimation of the OLP model is based on price residuals, the yield residuals can

become quite large for instruments with relatively small maturities. If a better

fit to shorter-maturity yields is required (for example, a 1-day rate identical to

the policy rate) then the weight applied to shorter-maturity yields may simply

be increased to satisfy the users requirements. If yield residuals are to be
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minimised, this may be achieved approximately by weighting the price residual

of each instrument by the inverse of the basis point value for each instrument.

[ Figure 4 here ]

[ Figure 5 here ]

The calibration of N and φ is based on a non-parametric assessment of

the absolute price residuals for each cross section across the entire sample pe-

riod. This is because preliminary analysis indicated that price residuals for

each cross section had a variance that fluctuated significantly over time (indi-

cating heteroscedasticity) and also often displayed non-normality (according to

Jarque-Bera tests), and so routine statistical techniques to determine appropri-

ate restrictions on N and φ (e.g the F-test) would not be valid.16

Regarding the appropriate value for φ, figure 6 shows the results for N =

4 when φ is freely estimated for each cross section, denoted as φt. Before

proceeding, note that the estimate of the Level parameter occasionally becomes

practically “unreasonable” (compared to the 10-year swaps yield, a proxy for

the long-maturity level of the yield curve) when φt falls below about 0.3, which

offers another pragmatic justification for calibrating φ.

[ Figure 6 here ]

One way of determining an appropriate value of φ is to model the time series

φt as a constant with autoregressive residuals (the null hypothesis of a unit

root in φt is strongly rejected); i.e φt = φ+ et, with et =
PI

i=1 ρiet−i + ut. For

16The alternative of jointly estimating of all cross sections by the Newton-Raphson method
while correcting for heteroscedasticity and non-normality, and with a varying number of in-
struments at each point in time, is practically infeasible.
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N = 3, the point-estimate of φ is 1.08, with a standard deviation of 0.27.17 This

compares with the median value of φt of 0.91. The “middle ground” between

these two estimates suggests that φ = 1 is appropriate, and this hypothesis

cannot be rejected by the t-statistic of (1− 1.08)/0.27 = 0.31. The results for

N ranging from 2 to 5 are similar.

Regarding the appropriate value for N , figure 7 illustrates summary statis-

tics for the time series of the maximum absolute price residual from each indi-

vidual cross section (associated with any instrument within that cross section),

with N ranging from 1 to 5, and with φ = 1 or φt for each cross section. It

is evident that increasing N beyond 3 and and/or choosing φ = 1 or φt makes

little marginal contribution to the overall goodness of fit. For example, with

N = 3 and φ = 1, the full-sample maximum absolute price residual (i.e the

maximum for the time series of the maximum absolute price residual from each

individual cross section) is $6,616. This is already well below 1 percent of the

approximately $1 million market-value for each of the instruments, and the

marginal improvement through adding another mode is only $929 (i.e the full-

sample maximum absolute price residual with N = 4 and φ = 1 is $5,687), or

$1,009 by adding two modes. A similar conclusion is evident for the median of

the time series of the maximum absolute price residual.

[ Figure 7 here ]

17After allowing for the effects of serial correlation on the estimated parameter variance.
See Hamilton (1994) pages 610 to 612 for further details.
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3.3 The time series of OLP(3, 1) parameters

Having calibrated N and φ, the OLP(3, 1) model of the yield curve is now

used to “condense” each daily observation of market-quoted yields for the

government-risk and bank-risk yield curves over the sample period into a conve-

nient time series of four essential parameters.18 These are illustrated in figures

8 and 9, and their intuitiveness is apparent. For example, the negative value

of the Slope parameter around July 1998 indicates that the yield curve was

sharply inverted at this point in time. The yield curve then steepened (the

Slope parameter rose) to be strongly positive around July 1999, before flatten-

ing again (the Slope parameter fell) to be approximately flat by July 2000 (the

Slope parameter was approximately zero). Similar generalisations may be made

about the other parameters. In particular, the global widening of credit spreads

during the 1998 Asian/Russian/Long Term Capital Management financial crisis

is well captured by the increase in the fitted Swaps spread parameter at that

time.

[ Figure 8 here ]

[ Figure 9 here ]

18There will also be a time series of price residuals associated with each instrument. The
empirical results suggest that these are small enough to be ignored for the purposes of this
article, but the issue is raised again in the conclusion.
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4 The OLP(3, 1) model under the expectations hy-

pothesis of the yield curve

Having derived a time series of cross-sectional parameters that satisfactorily

describe the yield curve at each point in time, the remainder of the article

investigates the inter-temporal consistency of those parameters. In particular,

given that the yield curve should naturally embody expectations of the evolution

of interest rates, the expectations hypothesis of the yield curve (hereafter EH)

is used as the basis for this investigation.

It is worth noting on the outset that the procedure that follows is not strictly

dependent on the OLP(3, 1) specification; this is just a convenient example. In

general, defining N and L in the OLP(N,L) model sets the dimensions of

the appropriate time-series model, which may then be derived analytically by

following the approach in the text.19

4.1 The expectations hypothesis for the forward rate curve

The EH for the forward rate curve in continuous time may be written as:20

Et [f (t+ τ ,m)] = a (m) + f (t,m+ τ) (12)

where:

19For example, the derived OLP(4, 1) VAR specification is available from the author on
request.
20The identity is derived by noting that under the EH, the forward rate is the expectation of

the instantaneous interest rate r(t) (for example, see Cochrane (2001) pages 352 to 355 for the
discrete time analogue). Hence, f (t,m+ τ) = Et [r (t+m+ τ)] = Et {Et+τ [r (t+m)]} =
Et [f (t+ τ ,m)].
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• Et is the expectation operator conditional upon information available at

time t;

• τ is a positive increment of time, measured in years;

• f (t+ τ ,m) is the instantaneous rate m-years forward, measured at time

t+ τ ;

• f (t,m+ τ) is the instantaneous rate (m+ τ)-years forward, measured at

time t; and

• a (m) allows for a term premium, which is a general function of maturity,

but is strictly time-invariant in this analysis.

Therefore, under the EH, the initial shape of f (t,m) at a point in time

implies an expected evolution of f (t,m) over time.

4.2 Application of the expectations hypothesis to the OLP(3, 1)

model

As at time t, the EH evolution of f(t,m) as described by the OLP(3, 1) model

is calculated using equations 9 and 12, and an initial value of β (t) obtained

from fitting the forward curve or the yield curve at time t. Et [f(t+ τ ,m)] also

has an OLP representation, i.e Et [f(t+ τ ,m)] = Et

©
[β (t+ τ)]0 g(φ,m)

ª
, and

so the resulting equality is:

Et

©
[β (t+ τ)]0 g(φ,m)

ª
= α0g(φ,m) + [β (t)]0 g(φ,m+ τ) (13)
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where α0g(φ,m) = a (m), with both α0 and g(φ,m) time-invariant. g(φ,m+τ)

may be expressed precisely in terms of g(φ,m),21 which means the EH evolution

of the OLP(3, 1) model parameters can be written as:

Et

©
[β (t+ τ)]0

ª
g(φ,m) = α0g(φ,m) + [β (t)]0 [Φ (φ, τ)]0 g(φ,m)

where:

• [Φ (φ, τ)]0=



1 0 0 0

0 exp (−φτ) 0 0

0 −2φτ exp (−φτ) exp (−φτ) 0

1− exp (−φτ) 0 0 exp (−φτ)


.

Factoring out the common term g(φ,m), and then taking the transpose

gives the final result as:

Et {β (t+ τ)} = α+Φ (φ, τ)β (t) (14)

where β (t) =
£
β1 (t) , β2 (t) , β3 (t) , β3+1 (t)

¤0 is now a column vector of the

OLP(3, 1) parameters. Hence, the EH evolution in continuous time of the for-

ward rate or interest rate curve as described by the OLP(3, 1) model is con-

veniently summarised as a simple time-series process for the OLP(3, 1) model

parameters. This process is denoted OLP(3, 1)/EH hereafter.

21This is evident by re-expressing each gn(φ,m + τ) in terms of gn(φ,m). For example,
g2(φ,m + τ) = − exp(−φ [m+ τ ]) = exp(−φτ) · − exp(−φm) = exp(−φτ) · g2 (φ,m). The
other relevant results are: g1(φ,m+τ) = g1(φ,m); g3(φ,m+τ) = −2φτ exp(−φτ) ·g2(φ,m)+
exp(−φτ) · g3(φ,m); and g3+1(φ,m+ τ) = [1− exp(−φτ)] · g1(φ,m) + exp(−φτ) · g3+1(φ,m).
Analogous results also follow for N > 3.

22



4.3 A time-series model for the OLP(3, 1) parameters

The continuous time result provides the basis for an iterated discrete time

version of OLP(3, 1)/EH; i.e the evolution of β (t) in continuous time may be

modeled as a finite difference process for “units of time” τ . Defining steps of τ

with an integer index, and allowing for model residuals gives:

βt = α+Φ (φ, τ )βt−1 + εt (τ) (15)

where:

• t as a subscript is now an integer index representing individual time-steps

of τ ; and

• εt (τ) is an iid normal 4-vector.

In a forecasting sense, εt (τ) represents the “expectational error” of βt rel-

ative to βt−1. This is attributable to new information arriving continuously

between time t − τ and t; that new information simultaneously causes the ex-

pectations formed at time t−1 to be incorrect, and changes future expectations

which are now incorporated in the updated β (t). Writing the expectational er-

ror as a function of τ recognises that εt (τ) should increase in magnitude for an

increasing horizon τ , although a functional specification is not actually required

for the empirical estimation.

In principle then, a time series of OLP(3, 1) parameters might be expected

to conform to a vector auto-regression (VAR) in levels, which could be tested

empirically. In practice, however, the coefficient of 1 in the top-left entry of
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Φ (φ, τ) (associated with β1,t) suggests that the VAR in levels is expected to

contain a single unit root,22 and hence empirical parameter estimates and tests

of restrictions would have non-standard distributions.

Since there is no dependence of any parameter on the level of the Level

parameter, an OLP(3, 1)/EH VAR representation that conforms with both em-

pirical and theoretical considerations is:

λt = γ +Λ (φ, τ )λt−1 + εt (τ) (16)

where:

• γ = [δ, α2, α3, α3+1]
0;

• λt =
£
∆β1,t, β2,t, β3,t, β3+1,t

¤0; and

• Λ (φ, τ) =



0 0 0 1− exp (−φτ)

0 exp (−φτ) −2φτ exp (−φτ) 0

0 0 exp (−φτ) 0

0 0 0 exp (−φτ)


An equivalent option is to calculate and estimate a complete model in first

differences on the left-hand side (i.e using ∆βt = Φ (φ, τ )βt−1 − βt−1 =

[Φ (φ, τ )− I]βt−1), although this no longer has the convenient VAR form of

equation 16. However, the four individual equations from the first difference

specification do provide convenient single-equation tests of each OLP(3, 1) com-

ponent under the EH, i.e:

22The eigenvalues of Φ (φ, τ) are {1, exp (−φτ) , exp (−φτ) , exp (−φτ)}, and |exp (−φτ)| is
strictly less than 1.
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∆β1,t = η1 + θ1 ·
©
β3+1,t−1 · [1− exp (−φτ)]

ª
+ ε1,t (17a)

∆β2,t = η2 + θ2 ·


β2,t−1 · [exp (−φτ)− 1]

−β3,t−1 · 2φτ exp (−φτ)

+ ε2,t (17b)

∆β3,t = η3 + θ3 ·
©
β3,t−1 · [exp (−φτ)− 1]

ª
+ ε3,t (17c)

∆β3+1,t = η3+1 + θ3+1 ·
©
β3+1,t−1 · [exp (−φτ)− 1]

ª
+ ε3+1,t (17d)

If the time series of each component conforms to OLP(3, 1)/EH, then equa-

tions 17a to 17d should result in estimates of θ1 to θ3+1 that are equal to

1. These individual equations also provide some quantitative intuition to the

stylised facts of mean reversion in the shape of the yield curve; for example, if

the yield curve is steeply sloped (i.e β2,t−1 À 0), then equation 17b predicts

that the yield curve is more likely to flatten in the future (i.e ∆β2,t < 0, since

[exp (−φτ)− 1] < 0). This tendency to flatten will also be influenced by the

extent that the yield curve is “upwardly bowed” (as measured by β3,t > 0).

Similar generalisations may be made for the expected changes to the other

parameters.

5 Empirical tests of New Zealand OLP(3, 1) data against

the EH predictions

This section tests the New Zealand OLP(3, 1) time-series data derived in sec-

tion 3 against the OLP(3, 1)/EH predictions derived in section 4. The results
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presented are only for the weekly horizon (i.e τ = 7/365 years); the daily and

monthly horizon results were similar in all respects. To generate the weekly

horizon data set, the OLP(3, 1) parameters are sampled each Wednesday, or

the prior or closest trading day in the event of a market holiday. This selection

avoids the unnecessary complication of having to model the moving-average

process that would be introduced by using data with overlapping horizons, and

the span of the data still allows for 263 weekly observations.

5.1 Unit root and cointegration results

Figure 10 shows the results of Augmented Dickey-Fuller (ADF) tests on the

first differences and the level of each time series (note that in this and each of

the following figures *, **, and *** respectively represent rejection of the null

hypothesis at the 10, 5, and 1 percent level of significance). The null hypothesis

of a unit root in the first differences is rejected in each case. The results for the

levels are generally in agreement with the OLP(3, 1)/EH predictions, in that a

unit root cannot be rejected for the Level series, and can be rejected for the

Slope and Bow series.

The exception is the Swaps spread series, where a unit root cannot be re-

jected at traditional levels of significance. This result is probably sample spe-

cific, given that the data period includes the sharp moves resulting from the

1998 global financial crisis. Further, an Engle-Granger test for cointegration

between the Level and Swaps spread series strongly rejects the hypothesis of

cointegration (regardless of ordering), which is consistent with the VAR spec-

ification in equation 16. Hence, the estimation and hypothesis testing of the
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VAR in equation 16 proceeds on the assumption that the Swaps spread series

does not truly contain a unit root.

[ Figure 10 here ]

5.2 Vector auto-regression results

Figure 11 compares the coefficient matrix obtained from estimating the VAR

specified in equation 16 with the coefficient matrix predicted by the OLP(3, 1)/EH

(i.e using τ = 7/365 years in equation 16), and assuming a constant vector of

zero (i.e the pure EH). Treating this as an unrestricted and fully-restricted es-

timation, the likelihood ratio statistic has a probability value of 6.7 percent,

which suggests that the data do not reject the OLP(3, 1)/EH model at the 5

percent level of significance.

[ Figure 11 here ]

However, there are obviously many alternative forms that the estimated

and/or fully-restricted VARs could take, and so figure 12 shows the results of

a systematic series of combinations. Firstly, the data do not reject a first-order

VAR against a second-order VAR, suggesting that the estimated first-order VAR

captures the dynamics of the data adequately. Secondly, allowing for a positive

term premium in the Swaps spread parameter, i.e using α3+1 = 1.6 basis points

(Case 1), or δ = −1.6 basis points and α3+1 = 1.6 basis points (Case 2), notably

improves the fit of the OLP(3, 1)/EH model to the data.23 This suggests that

23The value of 1.6 basis points is determined using the average of 85 basis points for the
Swaps spread series over the data period, and noting that, according to the OLP(3, 1)/EH,
the Swaps spread should follow an AR(1) process with a coefficient of ρ = exp (−7/365)
for the weekly horizon. Equating 85 basis points to the expected long-run value for the AR1
process, α3+1/ (1− ρ), gives α3+1 = 85×(1− ρ) = 1.6. Using -1.6 basis points as the constant
associated with the Level first difference means that a Swaps spread at its average level of 85
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a model with a positive term premium in the bank-risk yield curve is “more

realistic” than assuming the pure EH (which is not surprising given that Swaps

spreads tend to remain exclusively positive in the yield curves of almost all

countries, rather than reverting to zero). Note that a term premium in the

base yield curve could be allowed for using α2 > 0, but the empirical results

suggests this is not needed at this stage.

[ Figure 12 here ]

5.3 Single equation model results

Figure 13 shows the results from individually estimating the equations 17a to

17d. The initial results from the OLS estimations generally showed evidence of

non-normality and heteroscedasticity in the residuals, as summarised in figure

13. Given the potential ambiguity in the source and structure of heteroscedas-

ticity (the evidence is mixed between autoregressive conditional heteroscedas-

ticity and/or a structural change in volatility24), the standard errors of the OLS

estimates are therefore adjusted using White’s heteroscedasticity-consistent es-

timator (or the Newey-West method for Swaps spread equation, given the ev-

idence of serial correlation in the residuals). These results are shown in the

bottom three rows of figure 13.

Apart from the Swaps spread equation, the results do not reject the OLP(3, 1)/

pure EH predictions (i.e η1 to η3+1 = 0), at the standard levels of significance.

basis points will have no tendency to increase or decrease the Level parameter over the next
period.
24Prior to the Official Cash Rate regime, the Reserve Bank used a Monetary Conditions

Index (or MCI - a simple combination of short-term interest rates and the exchange rate) to
indicate the desired stance of monetary policy. The adherence to an MCI sometimes led to
sharp changes in short-term interest rates due to changes in the exchange rate.
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However, the results for both the Level and Swaps spread equations are again

notably improved by setting η1 = −1.6 basis points and η3+1 = 1.6 basis points,

as discussed in the previous section.

[ Figure 13 here ]

6 Conclusion and areas for further work

The empirical application of the OLP model to New Zealand data indicates that

daily government-risk and bank-risk yield curve data is adequately represented

using three parameters for the base yield curve, and one additional spread

parameter, i.e by the OLP(3, 1)model. The predictions of the pure expectations

hypothesis applied to the OLP(3, 1) model are marginally accepted by New

Zealand data, although further results suggest that allowing for a term premium

in the bank-risk yield curve provides a more acceptable representation.

An obvious extension of the empirical work in this article is to apply the

OLP model to the yield curves of other countries. Apart from providing similar

information to that presented here for New Zealand, this may also provide a

basis for modelling the transmission of yield curve effects between countries.

In general, the dual cross-sectional and inter-temporal consistency of the

OLP(3, 1) model makes it applicable to a variety of yield curve related topics.

For example, one application is to provide a gauge of interest rate expectations

held by the market at any point in time, and to measure changes in those

expectations over time. A related application is to predict the evolution of the

yield curve, which may be useful for market trading. Another aspect that may
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be applicable to market trading is the systematic analysis of the price residuals

that arise as a by-product of each cross-sectional fitting of the yield curve.

Regarding the OLP model itself, it would be desirable to provide more

robust theoretical foundations for the proposed modal formulation, and also

to investigate the flexibility of the model to alternative forms of expectations

hypothesis, such as risk-neutral relationships.

All of the extensions noted above are currently being investigated by the

author.
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Figure 1: The first four forward rate modes of the OLP model. Level mode is
g1, Slope mode is g2, Bow mode is g3, and Wave mode is g4, all with φ = 1.
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Figure 2: The first four interest rate modes of the OLP model. Level mode is
s1, Slope mode is s2, Bow mode is s3, and Wave mode is s4, all with φ = 1.
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Figure 3: The forward rate spread mode and the interest rate spread mode for
the OLP model, both with φ = 1.
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Figure 4: Market yields for 25 October 2001, and the estimated OLP(3, 1) yield
curve with φ = 1. The estimated parameter values (in percent) are Level =
7.17 (β1), Slope = +4.40 (β2), Bow = -2.65 (β3), and Swaps spread = 0.52
(β3+1).
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Figure 5: Yield and price residuals associated with the 25 October 2001 es-
timated OLP(3, 1) yield curve with φ = 1, as in figure 4. Government bond
residuals have been omitted for clarity.
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Figure 6: Time series of φt (i.e φ variable for each cross section of the yield
curve) and Level parameter estimates for the OLP(4, 1) model.
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residual from each individual cross section using the OLP(N, 1) model with
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φ = 1.
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Figure 8: Time series of the estimated OLP(3, 1) Level (β1) and Swaps spread
(β3+1) parameters. The scale range for Level is identical to that for Slope and
Bow in figure 11, but the Swaps spread scale range is only 2 percentage points.

37



-5.00
-4.00
-3.00
-2.00
-1.00
0.00
1.00
2.00
3.00
4.00
5.00

Ju
l-9

7

Ja
n-

98

Ju
l-9

8

Ja
n-

99

Ju
l-9

9

Ja
n-

00

Ju
l-0

0

Ja
n-

01

Ju
l-0

1

Ja
n-

02

Ju
l-0

2

Date of yield curve observation

Sl
op

e 
an

d 
B

ow
 p

ar
am

et
er

s
in

 p
er

ce
nt

Slope
Bow

Figure 9: Time-series of the estimated OLP(3, 1) Slope (β2) and Bow (β3)
parameters.

ADF unit root tests Number of lags ADF statistic
Level, no constant 15 0.06   
Slope, no constant 15 -2.01**
Bow, no constant 15 -2.07**
Swaps spread, no constant 15 -0.48   
Level, with constant 0 -2.20   
Swaps spread, with constant 1 -1.86   
∆Level, no constant 0 -16.52***
∆Slope, no constant 0 -16.45***
∆Bow, no constant 1 -15.66***
∆Swaps spread, no constant 0 -13.92***

Figure 10: ADF tests for unit roots on each time series of the OLP(3, 1) model
parameters. Sample size is 263 for levels, and 262 for first differences. Critical
values used to test significance were sourced from Hamilton (1994) page 763.
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Unrestricted Constant ∆Level Slope Bow Swaps
∆Level -7.7 -0.048 0.001 -0.026 0.085
Slope -16.9 -0.286 0.974 -0.074 0.223
Bow -1.7 0.067 -0.003 0.963 0.009
Swaps spread 3.8 -0.020 0.000 0.011 0.957
Twice log likelihood 5479.55, 241 degrees of freedom.

Fully restricted Constant ∆Level Slope Bow Swaps
∆Level 0 0 0 0 0.019
Slope 0 0 0.981 -0.038 0
Bow 0 0 0 0.981 0
Swaps spread 0 0 0 0 0.981
Twice log likelihood 5449.38, 20 restrictions.

Figure 11: First-order VAR estimate against the pure EH. The top entries rep-
resent the estimated constant vector (expressed in basis points) and 4×4 coeffi-
cient matrix. The bottom table entries represent γ = 0 and the OLP(3, 1)/EH
4×4 coefficient matrix Λ. The likelihood ratio statistic is 30.17, and χ2 (30.17)
with 20 degrees of freedom has a probability value of 6.7 percent.

Estimated VAR Restricted VAR 
(see notes)

Likelihood ratio 
statistic

Number of 
restrictions

Probability value 
(percent)

Second-order First-order 12.67 16 69.7
First-order Pure EH 30.17 20 6.7*
First-order EH, Case 1 16.23 20 70.3
First-order EH, Case 2 12.59 20 89.4

Figure 12: First- and second-order VAR estimates against various alternatives.
The pure EH uses γ = 0, Case 1 uses γ = (0, 0, 0, 1.6)0 basis points, and Case
2 uses γ = (−1.6, 0, 0, 1.6)0 basis points (as discussed in the text).
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θ 1 θ 2 θ 3 θ 4 θ 1 θ 4

OLS coefficient 0.12 0.84 1.51 0.06 1.73 1.17
Standard deviation 0.54 0.66 0.82 0.16 2.28 0.67
Jarque-Bera test 0.14 78.42 54.45 2004.49 0.10 2415.05
p value 93.4 0.0*** 0.0*** 0.0*** 95.2 0.0***
Ljung-Box test (3 lags) 1.75 1.42 1.27 13.13 1.62 12.67
p value 62.5 70.2 73.5 0.4*** 65.6 0.5***
ARCH test (3 lags) 11.29 15.01 7.16 4.15 12.73 3.12
p value 1.0** 0.2*** 6.7* 24.6 0.5*** 37.3
Goldfeld-Quandt test 1.20 2.73 0.91 5.25 1.20 5.11
p value (two sided) 15.2 0.0*** 68.3 0.0*** 15.2 0.0
Adjusted standard deviation 0.54 0.62 0.99 0.19 2.43 0.91
H0: α-1=0 t-statistic -1.63 -0.26 0.51 -4.92 0.30 0.19
p value (two sided) 10.5 79.8 60.8 0.0*** 76.4 84.9

Figure 13: Single equation estimations, and tests against the relevant
OLP(3, 1)/pure EH predictions for θ. The right-hand columns include η1 =
−1.6 basis points and η3+1 = 1.6 basis points. All test significances are re-
ported as probability values in percentages, allowing for the appropriate degrees
of freedom.
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