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Abstract 
 

This paper uses the volatility-adjusted orthonormalised Laguerre polynomial model of 

the yield curve (the VAO model) from Krippner (2005), an intertemporally-consistent 

and arbitrage-free version of the popular Nelson and Siegel (1987) model, to develop 

a multi-dimensional yield-curve-based risk framework for fixed interest portfolios. 

The VAO model is also used to identify relative value (i.e potential excess returns) 

from the universe of securities that define the yield curve. In combination, these risk 

and return elements provide an intuitive framework for attributing portfolio returns 

ex-post, and for optimising portfolios ex-ante. The empirical applications are to six 

years of daily United States interest rate swap data. The first application shows that 

the main sources of fixed interest portfolio risk (i.e unanticipated variability in ex-post 

returns) are first-order (‘duration’) effects from stochastic shifts in the level and shape 

of the yield curve; second-order (‘convexity’) effects and other contributions are 

immaterial. The second application shows that fixed interest portfolios optimised ex-

ante using the VAO model risk/relative framework significantly outperform a naive 

evenly-weighted benchmark over time. 
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1 Introduction

This article uses volatility-adjusted orthonormalised Laguerre polynomial model
of the yield curve (the VAO model) from Krippner (2005), an intertemporally-
consistent and arbitrage-free model of the Nelson and Siegel (1987) model, to
develop a framework applicable to measuring risk, attributing returns, and op-
timising fixed interest portfolios. This formally links and extends two areas of
literature that have until now remained independent from each other, i.e: (1)
using analytical yield-curve-based frameworks to measure interest rate risk and
attribute returns; and (2) using yield or price residuals from yield curve estima-
tion to identify “relative value” (i.e potential excess returns) from the universe
of securities that define the yield curve. These are discussed in turn below.

The measurement and immunisation of interest rate risk in fixed interest
portfolios has been an active and ongoing area of theoretical and empirical
research for many decades. One stream of this literature is the development
of “duration” and “convexity” measures, i.e analytical first-order and second-
order approximations of the change in portfolio market-value for a given yield
curve change.1 For example, Macauley (1938) and Fisher and Weill (1971)
developed the traditional duration measures for parallel changes to the yield
curve, while Elton and Gruber (1995) pp. 540-541, and Hull (2000) pp. 112-
113 note the convexity measures for parallel yield curve changes. More recently,
duration measures have been developed for non-parallel changes to the yield
curve, e.g see Chambers, Carleton and McEnally (1988), Reitano (1996), Mann
and Ramanlal (1997), and Bowden (1997).

Duration measures have also been extended to multiple dimensions. For
example, Willner (1996) and Diebold and Li (2002) use orthonormalised La-
guerre polynomial (OLP) models of the yield curve, as originally introduced by
Nelson and Siegel (1987), to define duration measures with three components.
These measures simultaneously represent the risks associated with three po-
tential ways that the yield curve may change, i.e a level/shift/parallel change,
a slope/twist/curve change, and a bow/barbell/butterfly/curvature change, to
use some of the intuitive names familiar to fixed interest portfolio managers. A
conceptually similar approach is based on principal components analysis, which
empirically defines the potential ways in which the yields of different maturity
buckets along the yield curve may change relative to each other, e.g see Barber
and Copper (1996), Hull (2000) pp. 357-361, and Kopprasch (2004).

The concept of estimating or “fitting” the yield curve with smooth analyt-
ical functions and using the resulting yield or price residuals (i.e actual less
estimated yield or price) as indications of relative value is used widely by finan-
cial market participants, e.g see Brown and Giurda (2003), HSBC Bank (2003)
and Malik, Barry and Xiao (2003). Several financial market participants use
OLP models to identify over-valued and under-valued bonds in a wide range

1Other analytical approaches to the measurement and immunisation of interest rate risk are
the generalised M-vector approach of Nawalkha, Soto and Zhang (2003), “gap” management
(e.g see Hull (2000) pp. 113-114), key rate durations (Ho 1992), and value-at-risk analysis
(e.g see Golub and Tilman (2000) chapter 5). However, these are not explicitly based on an
analytical model of the entire yield curve and/or its potential movements.
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of sovereign bond markets, e.g see Kacala (1993) and HSBC Bank (2001). In
the literature, Sercu and Wu (1997) applies the Vasicek (1977), Cox, Ingersoll
and Ross (1985), and polynomial spline models of the yield curve to Belgian
government bond data, and finds a significant relationship between the result-
ing bond price residuals and future excess returns. Ioannides (2003) applies the
Sercu and Wu (1997) approach to the UK government bond market models, and
obtains the best excess returns from an out-of-sample trading strategy based
on the price residuals from the Nelson and Siegel (1987) and Svensson (1994)
OLP models.2

Apart from combining the risk and relative value elements noted above into
an intuitive framework for measuring risk, attributing returns, and optimising
fixed interest portfolios, this article also makes several other contributions: (1)
the VAO model on which the framework is based is intertemporally-consistent
and arbitrage-free model of the yield curve, whereas prior related work has
not been;3 (2) the multi-dimensional analytical risk measures are extended to
second-order effects, while prior multi-dimensional frameworks based on OLP
models have been limited to first-order effects; and (3) the empirical application
is to United States swaps data, which is a new market relative to prior related
work on sovereign bond markets.

The outline of the article is as follows: section 2 outlines the key elements
and intuition of the VAO model relevant to this article; section 3 develops
the risk and return frameworks based on the VAO model, and combines those
into the portfolio optimisation framework; and section 4 contains the empirical
application to swaps data, including ex-post return attribution and simulated
real-time ex-ante portfolio optimisation. Section 5 concludes.

2 The VAO(3) model of the yield curve

2.1 The theoretical VAO(3) model

The volatility-adjusted orthonormalised Laguerre polynomial model of the yield
curve (the VAO model) is a generic, intertemporally-consistent, and arbitrage-
free version of the Nelson and Siegel (1987) model. The derivation of the generic
VAO model, via the Heath, Jarrow and Morton (1992) framework, is detailed in
Krippner (2005). The risk/return framework developed in this article uses the
N = 3 VAO model, or the VAO(3) model for short. In the VAO(3) model, the

2 In related work not based on yield curve estimation, Ronn (1987) exploits the “mis-
pricing” of fixed interest securities to significantly enhance returns on portfolios of US Treasury
securities while meeting future cashflow obligations, and Cornell and Shapiro (1989) provides
a case study of an apparent pricing anomaly in the US Treasury market.

3The lack of intertemporal consistence in standard OLP models is noted in Björk and
Christensen (1999), Filopovíc (1999a), Filopovíc (1999b), and Krippner (2005). The use of the
Vasicek (1977) and Cox et al. (1985) models in Sercu and Wu (1997) also lacks intertemporal
consistence, as those authors note, because parameters that should remain constant over time
are independently re-estimated at each point in time. Also, in this article the VAO(3) model
is arbitrage-free, not necessarily the yield curve data it is applied to. As noted in Brandt and
Yaron (2002), applications of arbitrage-free models to identically replicate each point on the
yield curve (e.g see Hull (2000) pp. 571-577 for background) lack intertemporal consistence,
and may even admit arbitrage while purporting to be arbitrage-free.
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shape of the yield curve and changes to the shape of the yield curve are essen-
tially represented by three coefficients applied to three underlying components
or “modes” (as detailed below). This makes the results comparable to prior
uses of the Nelson and Siegel (1987) model (which also has three coefficients),
and consistent with the idea that three principal components may be used to
adequately capture interest rate risks, as suggested in the work of Litterman
and Sheinkman (1991). However, the risk/return framework can be arbitrar-
ily extended to N > 3, as might be required or desired by practitioners or
researchers, and the vector derivations in section 3 continue to apply generally.

The VAO(3) model of the yield curve is:

R(t,m) = [β (t)]0 s (φ,m) +
1

2
σ1θ1m− v0u (φ,m) (1)

where R(t,m) is the continuously compounding zero-coupon interest rate curve
at time t, as a function of maturity m measured in years; β (t) is a 3-vector
of the linear coefficients βn at time t that apply to the corresponding three
interest rate modes sn(φ,m); s(φ,m) is a time-invariant 3-vector function of
maturity m containing the three interest rate modes sn(φ,m) noted below; and
φ is a constant parameter that alters the natural curvature of the modes. σ1
and θ1 are respectively the volatility and the market price of risk for β1 (t), both
constant parameters; v is a constant 3-vector of variance coefficients σ2n; and
u (φ,m) is a time-invariant 3-vector function of maturity m. These are detailed
in Krippner (2005), and are not central to this article.

From Krippner (2005), the modes for the VAO(3) model are, respectively:

s1(φ,m) = 1 (2a)

s2(φ,m) =
1

φm
[exp(−φm)− 1] (2b)

s2(φ,m) = − 1

φm
[2φm exp(−φm) + exp(−φm)− 1] (2c)

To illustrate the intuition behind the VAO(3) model, figure 1 illustrates the
first three interest rate modes of the VAO model , which are colloquially named
the Level, Slope and Bow modes in reference to their intuitive shapes. Figure 2
illustrates how the shape of the yield curve may be represented by the 3-vector
β (t) = (5.00, 2.00,−1.00)%, comprised of the Level, Slope, and Bow coefficients
at time t, applied to the modes in figure 1. Figure 2 also shows how an instan-
taneous increase of 50 basis points (bps, where 1 bp = 0.01 percentage points)
in the Level coefficient represents a parallel upward shift of the yield curve (i.e
the interest rates of all maturities rise by 50 bps), and an instantaneous 75 bps
increase in the Slope coefficient represents a “steepening” of the yield curve (i.e
the short rate moves down by 75 bps, infinite-maturity rates remain unchanged,
and intermediate-maturity rates move down in proportion to the magnitude of
the Slope mode by maturity). Figure 3 shows how an instantaneous 75 bp in-
crease in the Bow coefficient represents an “up-bowing” of the yield curve (i.e
the short rate moves down by 75 bps, infinite-maturity rates remain unchanged,

4



and intermediate-maturity rates move up or down in proportion to the sign and
magnitude of the Bow mode by maturity). Figure 3 also contains an example of
a simultaneous instantaneous change to the Level, Slope and Bow coefficients,
represented by the 3-vector δ (t) = (+50,−75,+75) bps, resulting in a new
yield curve shape represented by the 3-vector β (t) = (5.50, 1.25,−0.25)%.

[ Figure 1 here ], [ Figure 2 here ], [ Figure 3 here ]

2.2 The VAO(3) model in practice

Appendix C of Krippner (2005) details the method for estimating the VAO(3)
model coefficients and parameters from market-quoted data. Anticipating the
empirical application and detailed discussion of the data in section 4, figure 4
illustrates the application of the VAO(3) model to a single observation of the
US swaps yield curve, i.e 16 market-quoted mid-yields for securities with matu-
rities ranging from overnight to 30-years, all observed at the close-of-market on
Monday 16 June 2003. The estimation of the VAO(3) model results in the coef-
ficients β (16-Jun-03)= (6.16, 9.04,−4.27)%. This coefficient vector in tandem
with the other VAO(3) model parameters noted in figure 4 defines the underly-
ing zero-coupon yield curve that prevailed on that day, which may then be used
to reconstruct the fitted market prices and market yields using the cashflows of
each security. Those fitted price and yields do not correspond perfectly to the
market-quoted prices and yields of the securities that compose the yield curve,
and so the estimation also produces 16 price and yield residuals. Table 7 in
Appendix B contains a detailed numerical example of the fitted price, the price
residual, and the yield residual for the two-year swap.

In general, the VAO(3) estimation of a yield curve defined by K securities
at time t will generate K relationships Pk (t) = Pk [β (t)] + εk (t), where Pk (t)
is the market price (or market value, MV) of security k, Pk [β (t)] is the fitted
price of security k, determined by the cashflows of security k discounted using
the yield curve defined by the VAO(3) model, and εk (t) is the price residual of
security k. The price residuals may be equivalently expressed as yield residuals,
i.e ηk (t) = −εk (t) /BPVk (t), where BPVk (t) is the “basis point value” (i.e the
change in the security price for a single bp change in the yield) of security k at
the time the yield curve is estimated.4

[ Figure 4 here ]
Estimating the VAO(3) model for each observation of the yield curve over

time produces a time series of yield curve coefficients β (t) for the sample period,
and an associated time series of price and yield residuals for each security used
to define the yield curve. Again anticipating the empirical application in section
4, figure 5 plots the time series of three of the 16 yields used to define the yield
curve at each point in time, and figures 5 and 6 summarise the corresponding
output from the VAO(3) model; i.e respectively, the time series of Level, Slope,
and Bow coefficients, and the time series of yield residuals for three of the 16
swaps data series.

[ Figure 5 here ], [ Figure 6 here ], [ Figure 7 here ]

4BPV is sometimes called dV01, or PV01 in portfolio manager jargon.
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In practice, changes to the coefficient vectors β (t) will be measured over
finite periods of time (rather than instantaneously, as assumed in the examples
of section 2.1). Denoting a finite time horizon as τ , Krippner (2005) shows that
β (t+ τ) − β (t) will contain both a deterministic (anticipated) component,
and a stochastic (unanticipated) component δ (t, t+ τ). As will be detailed in
section 3.1, δ (t, t+ τ) delivers variable returns to the portfolio and so represents
a source of portfolio risk. The deterministic component of β (t+ τ) − β (t) is
a source of interest accrual (i.e expected return, or “running yield” in portfolio
manager jargon) to the portfolio. Changes to the price or yield residuals of
each security are another potential source of return (and marginal risk) to the
portfolio, as will be detailed in section 3.2.

3 Fixed interest portfolio risk, relative value, and
optimisation

This section develops a framework for portfolio risk, relative value, and opti-
misation using the VAO(3) model. For clarity and economy of notation, the
explicit time notation for β (t) and δ (t, t+ τ), and the functional dependence
of s(φ,m) and u(φ,m) on φ and m are omitted from this point onward. Also,
because only β is time-varying in the framework developed in this article, equa-
tion 1 may be further abbreviated for convenience to R(t,m) = β0s+Q, where
Q = Q (m) = 1

2σ1θ1m− v0u (φ,m).5
The outline of section 3 is as follows: section 3.1 discusses interest rate risk,

starting from an individual cashflow, to securities with multiple cashflows, and
to practical portfolios with multiple securities. Section 3.2 discusses expected
returns for fixed interest portfolios, and section 3.3 combines the risk/return
elements together to obtain a framework for portfolio optimisation.

3.1 A component framework for yield curve exposure and risk

3.1.1 The present-value and risk of a unit cashflow

The present-value of single unit cashflow is p (m) = exp [−R(m) ·m], by def-
inition. Hence, for a given initial value of β and Q, the present-value ac-
cording to the VAO(3) model (hereafter abbreviated to PV) may be expressed
as p(β,m) = exp

£− ¡β0s+Q
¢ ·m¤. After a stochastic disturbance δ over a

time horizon τ , the PV of the unit cash-flow will now be p(β + δ,m − τ) =
exp

£− ¡[β + δ]0 s+Q
¢ · (m− τ)

¤
. This relationship is non-linear, and so the

changes in τ and the components of δ will result in non-proportional changes

5The risks from unanticipated changes to the volatility coefficients are not considered in
this article, although it would be important in a portfolio that contained material interest
rate optionality (e.g options on interest rates, or mortgage-backed securities). The complete
treatment of the effect of changing volatility would require option valuation within the VAO
model framework, which is well beyond the scope of this article, and will be investigated
in future work by the author. As a first-order approximation, an option on a fixed interest
security may be included in the framework by “delta-weighting” (i.e probability-weighting)
the cashflows of the underlying security, or equivalently delta-weighting the first-order yield
curve exposures of the underlying security.
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to the PV. However, the attributions of the change in PV due to τ and the
components of δ may be approximated to the desired degree using a Taylor ex-
pansion. As detailed in Appendix A, the second-order Taylor expansion of this
expression excluding interest accrual terms (which are components of expected
return, as discussed in section 3.2) is:

p (β + δ,m− τ) ' p (β,m)−m · p (β,m) s0δ + δ
0
·
1

2
m2 · p (β,m) ss0

¸
δ (3)

where p (β,m) s is the first-order yield curve exposure (FOYCE), a column 3-
vector; and m2 · p (β,m) ss0 is the second-order yield curve exposure (SOYCE),
a 3× 3 symmetric matrix.6

3.1.2 The present-value and risk of a fixed interest security

A unit face-value of fixed interest security k may be defined as a collection of
J [k] cashflows, each of amount akj occurring at timemkj . The PV of security k

will therefore initially be Pk (β) =
XJ

j=1
akj ·p (β + δ,mkj). Excluding interest

accrual terms, the PV to a second-order approximation following a stochastic
disturbance δ is:

Pk (β + δ,m− τ) ' Pk (β)− λ0kδ + δ0Ωk δ (4)

where λk =
XJ

j=1
−akjmkj ·p (β,mkj) s, which represents the FOYCE of secu-

rity k; and Ωk =
1
2 ·
XJ

j=1
akjm

2
kj · p (β,mkj) ss

0, which represents the SOYCE
of security k. Table 7 in Appendix B contains a detailed numerical example of
the YCEs (i.e the FOYCE and SOYCE components) for the two-year swap on
16 June 2003.

3.1.3 The present-value and risk of a fixed interest portfolio

A fixed interest portfolio may be defined as a collection of K securities, each
with face-value Ak. The PV of the portfolio will therefore initially be

PK
k=1Ak ·

Pk (β). Excluding interest accrual terms, the PV to a second-order approxima-
tion following a stochastic disturbance δ is:

6The interpretation of equation 3 may be clarified with a simple example, i.e assume an
instantaneous parallel shift in the yield curve by ∆y. In this case, δ =(∆y, 0, 0) percentage
points, equation 3 becomes p (β + δ,m) ' p (β,m)−m · p (β,m) ·∆y+1

2m
2 · p (β,m) ·∆y2,

and rearranging gives ∆p
p(β ,m)

' −m ·∆y+ 1
2
m2 ·∆y2, where ∆p = p (β + δ,m)−p (β,m). This

is the familiar second-order approximation of the relative price sensitivity of a unit cashflow
to a level shift in the yield curve, with duration m and convexity m2. See, for example, Hull
(2000) pp 108-114, and substitute a single cashflow.
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KX
k=1

Ak · Pk (β + δ,m− τ) '
KX
k=1

Ak · Pk (β)

−
"

KX
k=1

Akλk

#0
δ + δ0

"
KX
k=1

AkΩk

#
δ (5)

where
PK

k=1Akλk represents the FOYCE of the portfolio, and
PK

k=1AkΩk

represents the SOYCE of the portfolio. Table 8 in Appendix B contains a
detailed numerical example of how the YCEs of a portfolio of fixed interest
securities are derived from the unit YCEs of the constituent securities as at 16
June 2003.

Note that the measures of risk can be expressed in proportional terms (anal-
ogous to traditional duration and convexity), aggregated to a single value-at-
risk (VaR) measure, and/or expressed relative to a benchmark portfolio. Also,
given a view of how the yield curve might change, the portfolio manager can
construct the portfolio to take an active risk on all or selected components of
the yield curve. These aspects are not central to this article, but are included
in Appendix C for completeness.

3.2 A framework for relative value and expected returns

Section 2.2 introduces the decomposition of the price of a fixed interest security
into Pk (t) = Pk [β (t)] + εk (t) via the VAO(3) model. The expected return
from a fixed interest security over a time horizon τ is therefore (by definition)
Et [∆Pk,t+τ ] = Et [Pk,t+τ (β)− Pk,t (β)] + Et [∆εk,t+τ ], where Et is the expec-
tations operator applied at time t, ∆Pk,t+τ = Pk,t+τ −Pk,t is the change in the
MV, [Pk,t+τ (β)− Pk,t (β)] is the change in the PV, and ∆εk,t+τ = εk,t+τ − εk,t
is the change in the price residual. The expected return on portfolio of K
securities with face-values Ak,t is then the summation:

KX
k=1

Ak,t ·Et [∆Pk,t+τ ] =
KX
k=1

Ak,t ·Et [Pk,t+τ (β)− Pk,t (β)]+
KX
k=1

Ak,t ·Et [∆εk,t+τ ]

(6)
The first right-hand-side summation of equation 6 simply represents the in-

terest accrual on the portfolio, i.e the aggregation of expected returns from each
security due to the fully-anticipated passage of time. This aspect is revisited in
section 4.2.

The second right-hand-side summation represents another potential source
of expected return if any Et [∆εk,t+τ ] 6= 0. In general, if Et [∆εk,t+τ ] is different
for each security, expected portfolio returns will differ according to the weighting
of each security held in the portfolio. In other words, a portfolio overweight
securities with positive Et [∆εk,t+τ ] would offer excess expected returns relative
to a portfolio with lower weights of those securities.

Any predictability of Et [∆εk,t+τ ] may be captured in a time-series process
for the yield residual ηk (t) = −εk (t) /BPVk (t). The simplest representation,
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as adopted in this article, is to assume that each ηk,t+τ follows an independent
and stationary first-order autoregressive process, or AR(1), with identical rates
of mean-reversion, i.e:

ηk,t+τ − πk = θ
¡
ηk,t − πk

¢
+ υk,t+τ (7)

where πk is a “mean-adjustment”, i.e a constant that allows for any persistent
deviations of ηk,t+τ away from zero due to security-specific factors external to
the VAO(3)model framework (e.g liquidity premia and/or preferred habitats, as
noted in Elton and Gruber (1995), pp. 513-518); θ is the AR(1) coefficient that
is assumed to be 0 < θ < 1;7 and υk,t+τ represents unpredictable stochastic
noise, which will be distributed υk,t+τ ∼ N

¡
0, σ2υ

¢
for any security k if the

VAO(3) model is estimated by minimising squared yield residuals (as in this
article). An advantage of assuming this time-series process is the high degree
of parsimony imparted to the optimisation framework derived in section 3.3; in
particular, it turns out that an estimate of θ is not required.8

The expectation of equation 7 is Et

£
ηk,t+τ

¤ − πk = θ
¡
ηk,t − πk

¢
, which

means that Et

£
∆ηk,t+τ

¤
= (θ − 1) ¡ηk,t − πk

¢
. Hence, a security with positive¡

ηk,t − πk
¢
, i.e the yield residual above the typical yield residual, would be

expected to contribute positive returns equal to − (θ − 1) ¡ηk,t − πk
¢ ·BPVk (t),

over the horizon τ , and contribute risk in the order of συ·BPVk (t). Conversely,
a security with

¡
ηk,t − πk

¢
negative would be expected to contribute negative

returns. For later use, it is convenient to define αk,t = ηk,t−µk as the “potential
yield enhancement” of a unit of security k at time t. This is so-named because
the MV of security k could potentially be enhanced by αk,t·BPVk (t) before
further expected changes to ∆ηk,t+τ become zero.

3.3 Portfolio optimisation

3.3.1 Vector/matrix notation for fixed interest securities and port-
folios

To dynamically combine the risks and returns of individual securities into port-
folios, it is convenient to re-express the MV and FOYCE components for each
security at each point in time in an alternative vector/matrix notation. Specif-
ically, use the following three steps: (1) For each security, “stack” the MV and
the three individual components of the FOYCE vector into a column 4-vector

7The empirical results are omitted for brevity, but the estimated AR(1) coefficients for
each yield residual series were positive, and unit root tests typically rejected the unit root
hypothesis. The assumption is also theoretically sound; apart from financial-arbitrage relative
to other securities that define the yield curve, it is also a mathematical impossibility for
security yields to diverge arbitrarily from the fitted yield curve.

8 In principle, any stationary time-series process could be assumed for the residuals or
estimated from the data (e.g a general vector autoregression), and the resulting expected
returns would be used in the optimisation framework developed in section 3.3. However, the
complexity of estimation might prove prohibitive in practical applications, and it is well known
that improving the in-sample fit of a model is often detrimental to predictability relative to a
parsimonious model.
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[Pk,λk,1,λk,2,λk,3]
0
t denoted as Λk,t.9 (2) Collect the vectors Λk,t of each secu-

rity that may exist in the portfolio into a 4×K matrix [Λ1, . . . ,Λk, , . . . ,ΛK ]t,
denoted as Λt. (3) Represent the individual face-values of the securities in the
portfolio as a column K-vector [A0,1, . . . , A0,k, . . . , A0,K ]

0
t, denoted as A0,t.

The MV and the FOYCE components for the portfolio will now be sum-
marised by the column 4-vector ΛtA0,t. Regarding expected returns, collect
the αk,t for each security that may exist in the portfolio into a column K-vector
[α1,t, . . . , αk,t . . . , αK,t]

0, denoted as αt. Table 8 in Appendix B contains a de-
tailed numerical example of Λk,t, Λt, A0,t, ΛtA0,t, and αtA0,t for a portfolio
as at 16 June 2003.

3.3.2 The optimisation of portfolios of fixed interest securities

The mean/variance approach of Markowitz (1959), as noted in Elton and Gru-
ber (1995), essentially seeks to maximise expected portfolio returns versus the
expected standard deviation of those returns while respecting given constraints
on individual securities and the overall portfolio. The approach in this arti-
cle is similar in that it seeks to maximise expected returns while keeping the
expected standard deviation unchanged. Specifically, using the notation from
section 3.3.1, define a benchmark portfolio by the face-value vector A0,t, and
then propose an alternative portfolio defined by the face-value vector A1,t that
has the same expected standard deviation but maximum expected return. This
optimisation problem may be summarised as the system:

Maximise :
KX
k=1

A1,k,t ·− (θ − 1) · αk,t · BPVk (t) (8a)

+
KX
k=1

A1,k,t ·Et [Pk,t+τ (β)− Pk,t (β)] (8b)

subject to :
KX
k=1

A1,k,t · Pk,t=
KX
k=1

A0,k,t · Pk,t (8c)

and : σ [A1,t] = σ [A0,t] (8d)

and : A1,k,min ≤ A1,k ≤ A1,k,max (8e)

where σ (·) denotes the standard deviation of portfolio returns using or A0,t or
A1,t, and A1,k,min and A1,k,max are given minimum and maximum constraints
on the face-values of A1,k that may be held in the portfolio (e.g A1,k,min = 0
prohibits negative face-values or “short” positions in the portfolio).

9Using the MV anticipates the typical practical constraint that trading be cash-neutral (so
that cash injections or withdrawals are not required). The SOYCEs could also be included
if required, in which case the six unique individual elements of the SOYCE matrix Ωk,t, i.e
Ωk,11,Ωk,12,Ωk,13,Ωk,22,Ωk,23,Ωk,33, would also be stacked into Λk,t to capture the second-
order effects. The generic VAO model to second-order would have 1+N+N (N − 1) /2 terms
in each vector Λk, where N is the number of modes, and N (N − 1) /2 is the number of unique
components in the Ωk matrix.
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The equations in system 8 may be simplified using three reasonable assump-
tions. These are collected here for convenience, including a brief justification
(and will later be confirmed empirically), i.e:

1. Assumption 1:
XK

k=1
A1,k,t · Et [Pk,t+τ (β)− Pk,t (β)] will be approxi-

mately constant for all feasible alternative portfolios. This follows from
that fact that the universe of feasible alternative portfolios must all have
the same portfolio MV, as specified by the equality constraint in equation
8b, and the interest accrual returns should therefore be similar.

2. Assumption 2: Scaling each security in the objective function by 1/BPVk (t)
will leave all feasible alternative portfolios with similar contributions to
expected portfolio standard deviation from changes to relative value. This
follows from the note in section 3.2 that the unpredictable stochastic noise
on the yield residual υk,t+τ is distributed as N

¡
0, σ2υ

¢
for all securities.

Hence, the unit expected standard deviation on the price residual for se-
curity k will be συ·BPVk (t), and so scaling by 1/BPVk (t) will leave the
unit expected standard deviation constant.

3. Assumption 3: Feasible portfolios with identical FOYCE componentsPK
k=1Akλk will have very similar expected portfolio standard deviations.

This follows from the fact that the distribution of δ is independent of the
portfolio structure. Hence, portfolios with

PK
k=1Akλk identical will have

σ

½hPK
k=1Akλk

i0
δ

¾
identical , and the latter is the first-order contribu-

tion to the standard deviation of the portfolio (which follows from the
results derived in section 3.1).

Assumption 1 means the second line of the objective function equation 8a
may be eliminated, and then the scalar − (θ − 1) may be eliminated from the
first line (being identical for each security). Assumption 2 scales the remainder
of the objective function by 1/BPVk (t). This gives the final objective function:XK

k=1
A1,k,t · αk,t = α0tA1,t, using the notation of section 3.3.1.

Regarding the constraints, using the vector notation from section 3.3.1, the
MV and variance constraints of 8b and c may be replaced by ΛtA1,t = ΛtA0,t.
Specifically, if the first component of the 4-vector ΛtA1,t equals that of ΛtA0,t,
then the MVs of the two portfolios will be identical, if the second to fourth
components of ΛtA1,t equal those of ΛtA0,t, then the FOYCE components will
be identical.10

The system represented by equations 8a to d therefore reduces to the system:

Maximise: α0tA1,t (9a)

subject to: ΛtA1,t = ΛtA0,t (9b)

and: A1,k,min ≤ A1,k,t ≤ A1,k,max (9c)

10And if the six unique SOYCE components were also included, the SOYCE components
would be identical.if the fifth to tenth components of ΛtA1,t equalled those of ΛtA0,t.
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which is a linear programme. Compared to the alternative approach (in prin-
ciple) of maximising expected returns versus standard deviations defined via
variances and covariances, the advantages of the linear programming approach
are twofold: (1) the optimisation may now be undertaken using the simplex al-
gorithm, a standard and straightforward method of optimisation;11 (2) the op-
timisation problem has ready intuition, i.e the portfolio with the highest poten-
tial value and MV and FOYCE components identical to the initial/benchmark
portfolio will offer the highest expected returns for the same risks.

Note that transactions costs are deliberately not included within the opti-
misation framework, because they introduce several complexities that are well
beyond the scope of this article. This is discussed further in Appendix C. Ex-
cluding transaction costs in both the model and the empirical results is also
standard in the prior related literature (e.g see Sercu and Wu (1997) and Ioan-
nides (2003)).

4 The empirical application of the VAO(3) risk/return
framework

4.1 Description of the data

The empirical analysis is undertaken using United States fixed-for-floating in-
terest rate swaps data. Swaps data are used rather than US Treasury market
data for the following reasons: (1) swaps are a new class of security on which to
investigate relative value, while the issue of relative pricing in sovereign bond
markets has already been addressed previously in Sercu and Wu (1997), Ioan-
nides (2003), and for the US Treasury market in Ronn (1987) and Cornell and
Shapiro (1989); (2) the swaps data are quoted for standard maturities mak-
ing the analysis more straightforward than for sovereign bond markets where
the investment universe must be continuously adjusted to allow for maturities
and new issuance; and (3) swaps are more standardised and homogeneous than
government bonds, so there is less chance of unique market-structure factors in-
fluencing the results. This applies especially to the US Treasury market, where
the relative prices of securities are influenced dynamically by on-the-run/off-
the-run effects, issuance/buyback effects, liquidity considerations, differences
in tax treatment, and differences in the effective underlying funding rates.12

The data are obtained from Datastream, and are the daily closing mid-rates
for the federal funds target rate, and the 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20,
25, and 30-year fixed-for-floating swaps rates. This gives 16 rates in total, and
the sample period is from 1 May 1998 to 22 September 2004 (the beginning
of the period is limited by the availability of the 20, 25, and 30-year swaps
rates). Note that the federal funds rate is used to provide a time-consistent

11See, for example, Murty (1983).
12See Fleming (2003) for a discussion of these aspects in the context of measuring market

liquidity. Note that the effective funding rate for each US Treasury security is its associated
repurchase rate, and these often differ markedly between bonds due to bonds going “special”
(i.e being tightly held by a few market participants) in the physical market.
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representative short-maturity rate for the swaps yield curve. While a bank-
risk short-maturity rate would be more ideal (to be consistent the swaps rates
that are also bank-risk), the London interbank offered (LIBOR) rates that are
available are fixed in the London morning, which would not be time-consistent
with the swaps rates at the US market close. Using the federal funds rate may
make a minor impact on the outright attribution of interest accrual returns,
as noted in the following section, but it makes no impact on the comparative
analysis in section 4.3.

While the sample period is relatively short in chronological time, it should be
representative; i.e the data spans 1,599 trading days, it captures a full monetary
policy cycle (i.e the 1999 to 2000 sequence of federal funds rate hikes, the
2001 to 2003 sequence of cuts, and the 2004 sequence of hikes to-date), and
it captures a full trough-peak-trough cycle in long-maturity rates. The sample
also includes the financial market stress events of the Asian/Russian/LTCM
crisis, the 11 September 2001 World Trade Centre tragedy, the 1999 30-year
Treasury buy-back programme and the subsequent 2001 cessation of issuance,
and the deflationary scare of 2003 to 2004. Before beginning the empirical
analysis, 24 obvious data anomalies occurring over 11 days of the dataset were
corrected,13 and non-trading days were removed from the dataset. Figure 5
illustrates the time series of three of the 16 data series used in the empirical
analysis.

As noted in Hull (2000) pp. 132-133, a fixed-for-floating rate swap agree-
ment is equivalent to a fixed coupon bond funded by a floating rate note lia-
bility. A market-quoted swaps rate defines the coupon of a par fixed coupon
bond, and the other parameters are defined by agreed market convention; i.e
a US swaps rate S (t, x) quoted at date t for maturity x-calendar-years im-
plies notional settlement of the unit face-value (i.e a cashflow of −1) on date
t+2-working-days, with the first coupon (i.e a cashflow of +S (t, x) /2) on date
t + 2 + 6-calendar-months, subsequent coupons (i.e cashflows of +S (t, x) /2)
each 6-calendar-months thereafter, and the final coupon payment and notional
return of principal (i.e a cashflow of 1 + S (t, x) /2) at the maturity date of
t + 2 + x-calendar-years.14 Figure 1 shows an example of the fixed cashflows
implied by the 2-year swap rate quoted on Monday 16 June 2003. The floating
rate leg of the swap is a par floating rate note with notional drawdown of the
unit face-value on date t+ 2-working-days, subsequent payments of interest at
three-monthly intervals based on the 3-month LIBOR rate, and the notional
payback at the maturity date of t+2+ x-calendar-years. However, these float-
ing cashflows make no contribution to the valuation and the interest rate risk
of the swap agreement implied by the market-quoted rate, and may therefore
be ignored for the analysis in this article.15

13Specifically, one “big figure error” (i.e an incorrect percentage point for one swap rate)
and “stale quotes” indicated by daily changes in yields for individual swap maturities that
were 10 to 50 bps inconsistent with the daily changes for swaps rates of similar maturities.
14All subject to the modified following business day convention, as noted in Hull (2000) p.

128.
15The floating leg of the swap will only contribute valuation and interest rate risk once the

first floating rate is set, and therefore becomes a known cashflow. In this article, the swaps are
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4.2 The ex-post attribution of portfolio returns

The investigation of ex-post portfolio returns is undertaken using a benchmark
portfolio constructed as follows: (1) the benchmark portfolio is established as
at 1 May 1998 with zero cash, a $10 million face-value for each swap maturity
(to give a total market value of zero, because the MV of floating leg of the swap
equals the MV of the fixed leg); (2) this portfolio is carried over to the following
trading day, and the daily return is calculated by revaluing the cash flows of
the swaps using the zero-coupon curve “boot-strapped” from the new prevailing
yield curve;16 (3) the face-values in the portfolio are reset to $10 million; and (4)
steps 2 and 3 are repeated for the entire sample. This process gives a time-series
of 1,598 independent daily returns for the benchmark portfolio. The cumulative
returns for the benchmark portfolio are plotted in figure 8.

Attributing ex-post portfolio returns to the YCEs for a given day firstly
requires an ex-post estimate of δ for that day. This can be calculated as:17

δ = β (t+ τ)−Φ (φ, τ)β (t)− µ (τ) (10)

where:

Φ (φ, τ)=

 1 0 0
0 exp (−φτ) −2φτ exp (−φτ)
0 0 exp (−φτ)

 (11)

and µ (τ) is a constant 3-vector of term premia coefficients applicable to the
horizon τ (one working day in this case). As used in this article, an internally-
consistent estimate of µ (τ) for the sample may be estimated ex-post as the
average of the time series β (t+ τ) − Φ (φ, τ)β (t) calculated for each day of
the sample. This ensures that the average of the realised δ values will identically
equal zero (which is the expected value of δ) over the sample. Secondly, the
calculations of the vector

PK
k=1Akλk and the matrix

PK
k=1AkΩk for the given

day are undertaken using the estimated VAO(3) model for the given day, and
the cashflows of each of the securities in the benchmark portfolio on that day.
Finally, substituting the values of δ,

PK
k=1Akλk, and

PK
k=1AkΩk into equation

5 gives the returns for that day that are attributable to the individual FOYCE
components and the six unique SOYCE components. Repeating this over the
entire sample gives the sequence of attributions to the FOYCE and SOYCE
components.

Portfolio returns due to changes in the relative value of the portfolio are
calculated directly by comparing the relative value of each security to its relative
value on the following day. The final attribution is the interest accrual return,

effectively terminated via the exchange of cash equal to the market-value of the swap, before
the floating leg becomes effective.
16Hull (2000) p. 150 discusses the concepts behind this technique. The analysis in this

article uses a continuous, stepwise zero-coupon curve based on the linear interpolation of the
continuously compounding interest rates at the maturity of each swap.
17Equation 10 follows from the result in Krippner (2005) that Et [β (t+ τ)] = µ (τ) +

Φ (φ, τ)β (t), and then substituting this result into the definition δ (t, t+ τ) = β (t+ τ) −
Et [β (t+ τ)].
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which is estimated as the difference between the actual benchmark portfolio
returns less the FOYCE, SOYCE, and relative value returns already attributed
above.

The ex-post portfolio attribution results are summarised in table 1. This
shows that the dispersion of ex-post daily returns (as measured by the stan-
dard deviation, minimum, maximum, or the spread between maximum and
minimum) are dominated by the FOYCE components, e.g the standard devi-
ation rankings are σ (Level FOYCE) > σ (Slope FOYCE) > σ (Bow FOYCE)
À σ (Relative value) > σ (Accrual returns) > σ (SOYCEs). Table 2 contains
the variances and covariances between each of the attribution groups, which
shows that the variances and covariances outside of the “FOYCE block” are
very small. Specifically, the FOYCE block variance is within 3% of total port-
folio variance, and therefore the FOYCE standard deviation would be within
1.5% of the total portfolio standard deviation.

[ Table 1 here ], [ Table 2 here ]
These results offer an important insight into ex-ante portfolio risks. That is,

δ is random quantity ex-ante, and so
hPK

k=1Akλk

i0
δ and δ0

hPK
k=1AkΩk

i
δ

represent risks to portfolio returns due to unanticipated changes in the Level,
Slope, and/or Bow of the yield curve. It is therefore evident that the risks of
the portfolio are adequately captured by the FOYCE components. This result
accords with assumption 3 in section 3.3.2, and it also suggests that the SOYCE
components of the YCEs may be ignored in the practical management of fixed
interest portfolios.18

Regarding returns, the FOYCE and SOYCE returns simply reflect the ag-
gregation of the changes to the shape of the yield curve that prevailed over the
sample period applied to the YCEs of the benchmark portfolios (e.g the attribu-
tion to Level FOYCE component is positive because the portfolio had negative
Level FOYCE in a falling rate environment). The returns attributed to relative
value are relatively small, which suggests that the contributions from relative
value tend to average out over time in the benchmark portfolio. The interest
accrual returns are positive, which is worthy of note. In a risk-neutral environ-
ment, this interest accrual component should be identically zero, because the
interest accrual from all cashflows should be identical, and a swap is equivalent
to a fixed interest asset exactly offset by a floating rate liability. The positive
interest accrual of $3.870 million (which equates to 39 basis points per annum
on the constant face-value of $150 million over the 6.57 years of the sample
period) therefore reflects the risk-averse environment that would typically be
expected in financial markets; i.e the interest accrual is implicitly higher on the
cashflows of the longer-maturity fixed interest asset longer than on the floating
rate liability. As noted in the previous section, some of these positive returns
may be due to the use of the federal funds rate instead of a bank-risk short-

18The latter suggestion is consistent with the results of Soto (2001), where it is found that
constraints on “level, slope and curvature of term structure shifts are necessary to guarantee
a return close to target”, while differences in traditional convexity have little impact over
horizons of one and two years. However, SOYCE effects will aggregate steadily over time,
(because they are effectively the sums of the squared components of the vector δ), which means
they will ultimately make material contributions to portfolio returns over long horizons.
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maturity rate. However, the 3—month rate LIBOR has averaged only 17.8 bps
above the federal funds rate over the sample, and since the overnight LIBOR
rate was introduced in January 2001, it has averaged only 7.7 bps above the
federal funds rate. Hence, the interest accrual component would still be positive
even allowing for adjustments of those magnitudes.19

4.3 Simulated real-time ex-ante portfolio optimisation

Simulated real-time (SRT) ex-ante portfolio optimisation is so-named because
the portfolio optimisation at each point in time uses only information that
would have been available at that point in time, and it seeks to maximise
future returns.20 The SRT ex-ante optimisation in this article uses the VAO(3)
parameters previously estimated in Krippner (2005) using monthly data for the
government bond curve from October 1986 to January 1994, i.e σ1 = 0.84%,
θ1 = 1.62, φ = 0.8040, and v =

¡
0.842, 1.492, 1.172

¢
%2. These estimates would

obviously have been available if the portfolio optimisation had begun in 1 May
1998. Regarding mean-adjustments to the yield residuals to obtain αt for the
optimisation process, two alternatives are tested: optimised portfolio 1 (OP1)
uses no mean-adjustment, so πk = 0; and OP2 uses SRT mean-adjustments, so
πk is set by recursive estimation using the mean of the yield residuals up to the

previous working day, i.e πk (t) = 1
t−1

Xt−1
i=1

ηk,i (the initial value πk (1-May-98)
is set to zero, given that the yield residual from the previous day would not be
available).

Several further optimisations are performed using the in-sample estimates of
the VAO(3) parameters and three different calculations of the mean-adjustment,
i.e OP3 uses πk = 0; OP4 uses the full-sample estimated means for the yield

residuals, i.e πk = 1
1598

X22-Sep-04

i=1-May-98
ηk,i; and OP5 uses SRT estimates of πk as

for OP2. These are obviously not genuine SRT ex-ante optimisations, but OP4
provides a direct comparison to the non-optimised benchmark, and the other
optimisations are used to investigate the sensitivity of optimisation performance
to the VAO(3) parameters and the mean-adjustments used in the optimisations.

The investigation of portfolio optimisation performance is undertaken using
an alternative portfolio constructed as follows: (1) the benchmark portfolio is
established as at 1 May 1998 with zero cash, and a $10 million face-value for
each swap maturity; (2) the VAO(3) model is estimated using the yield curve
data at time t, and this is used to calculate the yield residuals for each swap
security and the FOYCEs for the benchmark portfolio; (3) πk is set according
the alternatives discussed for OP1 to OP5 above, and αt is calculated; (4) the
alternative portfolio is optimised using the linear programme in equation 9 (i.e
with the alternative portfolio MV and FOYCE components equal to those of

19The variability in the interest accrual returns partly reflects the uneven spacing of working
days (e.g there will be more interest accrual expected over a weekend or holiday than between
adjacent weekdays). Also, being a “remainder”, the interest accrual term will implicitly
capture third-order and higher effects ignored in the second-order Taylor approximation of
section 3, but those should be very small.
20The name is adopted from the simulated real-time forecasting of Stock and Watson (2002)

in a macroeconomic context, and is also known as out-of-sample testing.
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the benchmark portfolio on that day), and the constraint that the face-values
of each swap security are maintained between $0 and $20 million, and cash is
maintained at zero; (5) this optimised portfolio is carried over to the following
trading day and the daily return is calculated by revaluing the cash flows of the
swaps using the zero-coupon curve “boot-strapped” from the new prevailing
yield curve; and (6) steps 2 to 4 are repeated for the entire sample.

This process gives a time series of 1,598 independent daily returns for the op-
timised portfolios. Figure 8 plots the cumulative returns for OP4. It is evident
that the returns for OP4 are higher than for the non-optimised benchmark (by
$15.049 million over the full sample), and those excess returns accrue steadily
over the sample period (hence, the excess performance is unlikely to result from
one or more fortuitous events). The other optimised portfolios also outperform
the benchmark portfolio.

To gauge the source of those excess returns, the OP4 returns are attributed
ex-post as for the benchmark portfolio, and those results are shown in table 3.
The attributions to the FOYCE components are identical to the benchmark,
which occurs by definition because the optimisation process exactly matches
the FOYCE components of the optimised and benchmark portfolios. The attri-
butions to the SOYCE components are very similar to those of the benchmark,
indicating that leaving the SOYCE components uncontrained makes an imma-
terial difference to portfolio returns.

The largest difference is in the relative value component, which is $14.859
million higher in the optimised portfolio. This accords with the premise of
the optimisation framework, i.e that the maximisation of relative value in the
optimisation process should deliver excess returns over time relative to a non-
optimised benchmark portfolio. There is also a slight difference between the
optimised and benchmark interest accrual components, but this is several or-
ders of magnitude smaller than the relative value differences. Indeed, the simi-
larity of the interest accrual returns accords with assumption 1 in section 3.3.2
that interest accrual returns do not differ much between feasible portfolios.
Specifically, the total interest accrual return of $4.051 million equates to 41
basis points per annum, compared to the 39 basis points per annum in the
benchmark portfolio.

Regarding the dispersion of attributed returns for OP4, the standard de-
viations in table 3 and the variances and covariances in table 4 are typically
identical or very similar to those of the benchmark portfolio. The exception is
again in the components related to relative value. While table 3 shows that the
standard deviation of the relative value attributions is higher in OP4 than the
benchmark portfolio, table 4 shows that this is offset by a negative covariance
with the FOYCE components, leaving the overall variance of OP4 approxi-
mately equal to the benchmark portfolio. This results accords with assumption
2 in section 3.3.2, and most importantly it also indicates that OP4 is not taking
on excess risk relative to the benchmark to achieve the relative excess returns.
The other optimised portfolios show similar results relative to the benchmark
portfolio.

Figure 9 plots the cumulative returns of the OP2, OP4, and OP5 (i.e the
portfolios optimised with full-sample or SRT mean-adjustments) less the cumu-
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lative benchmark returns. Each of these series indicate excess returns accruing
steadily over the sample period, with similar total excess returns by the end
of the sample. Table 5 contains the summary annualised statistics for the ex-
cess returns. The information ratios (i.e annualised returns divided by the
annualised standard deviations) are extremely high, and the corresponding t-
statistics underlying the information ratios are extremely significant (i.e well
beyond the 1% threshold).

Figure 10 plots the cumulative returns of the OP1 and OP3 (i.e with πk = 0)
less the cumulative benchmark returns. While the cumulative excess returns are
still positive, the end-of-sample excess returns are much less than for OP2, OP4,
and OP5, and the excess returns do not accrue as steadily. Table 5 shows that
the information ratio for OP1 is moderate (with the t-statistic only significant
to the 10% level), and that for OP3 is small (with an insignificant t-statistic).

Table 6 compares the returns for the optimised portfolios to each other.
OP4 is the natural benchmark for optimised portfolio performance, because
it uses the ideal parameters for the optimisation (i.e in-sample parameters for
the VAO(3) model and in-sample estimates for the mean-adjustments). Within
the optimised portfolios that use the in-sample VAO(3) parameters, line 1 of
table 6 (i.e OP3 less OP4) shows that the difference in excess returns is sig-
nificantly negative using no mean-adjustment, but line 2 (i.e OP5 less OP4)
shows the difference is insignificant using the SRT mean-adjustment. This sug-
gests that optimisation performance deteriorates materially when inappropriate
mean-adjustments are used, but using consistent estimates provided by the SRT
mean-adjustments makes little impact. As an aside, the deterioration of the op-
timisation results using no mean-adjustment tentatively suggests that factors
external to the VAO(3) model framework (e.g liquidity premia and/or preferred
habitats, as noted in Elton and Gruber (1995) pp. 513-518) may influencing the
shape of the US swaps curve over the sample period, although further research
would be required to make any firm conclusions on that aspect.

Comparing the returns of optimised portfolios that use pre-sample VAO(3)
parameters to OP4, line 3 of table 6 (i.e OP1 less OP4) again shows the mate-
rial deterioration of optimisation performance with no mean-adjustment, while
line 4 of table 6 (i.e OP2 less OP4) indicates that performance is not mate-
rially affected by using different VAO(3) parameters when a consistent mean-
adjustment is made. This suggests that the optimisation results are much more
sensitive to whether consistent mean-adjustments are being made, rather than
whether the “correct” VAO(3) parameters are being used. This is confirmed
in line 5, where performance materially deteriorates with no mean-adjustment
even when the same pre-sample VAO(3) parameters are used.

Finally, lines 6 and 7 in table 6 indicate that the choice of VAO(3) param-
eters can have a material influence on performance when the mean-adjustment
aspect is held constant between the optimisations. However, using “incorrect”
VAO(3) parameter estimates is evidently not necessarily detrimental to op-
timisation performance, because the optimisations using pre-sample VAO(3)
parameter estimates show higher returns that with the “correct” VAO(3) pa-
rameter estimates.
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5 Conclusion

This article uses volatility-adjusted orthonormalised Laguerre polynomial model
of the yield curve (the VAO model) from Krippner (2005), an intertemporally-
consistent and arbitrage-free version of the Nelson and Siegel (1987) model, to
develop a framework applicable to measuring risk, attributing returns, and op-
timising fixed interest portfolios. In the empirical application using six years of
US interest rate swaps data, the ex-post attribution analysis shows that nearly
all of the variability in portfolio returns is due to first-order yield curve expo-
sures (i.e FOYCEs, or “duration” effects) from stochastic shifts in the level and
shape of the yield curve; second-order (“convexity”) effects and other contri-
butions are immaterial. Ex-ante, those yield curve changes are unpredictable,
and so represent sources of risk to the portfolio.

The second empirical application shows that portfolios optimised ex-ante
using the VAO model risk/return framework significantly outperform a naive
evenly-weighted benchmark over time. This provides support for the idea that
“relative value” (i.e deviations of actual yields from the yields implied by the
VAO model) is a quantifiable concept, and maximising that quantity offers a
way of enhancing portfolio returns. That said, consistent with the prior related
literature, the analysis presented in this article does not include transactions
costs (Appendix C discusses the complexities that transactions costs introduce).
Hence, it remains an open question whether the US swaps market offers arbi-
trage opportunities that can be systematically exploited in practice. This will
be explored by the author in future work.

A The second-order Taylor expansion for a unit cash-
flow

Using the notation of Greene (1997), the second-order Taylor expansion of
p(β+δ,m−τ) = exp £− ¡[β + δ]0 s+Q

¢ · (m− τ)
¤
around the column 4-vector

[β1, β2, β3,m]
0 is defined as:
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(12)

where, for notational convenience,
£
δ0,−τ¤ is the row 4-vector [δ1, δ2, δ3,−τ ]

partitioned as the row 3-vector δ0 and the scalar τ ,21 and the first-order and
second-order components in equation 12 have been partitioned in accordance
with this notation. Expanding equation 12 using the given partitioned compo-
nents gives:

21 In full, [δ1, δ2, δ3,−τ ] = [β1 + δ1, β2 + δ2, β3 + δ3,m− τ ] − [β1, β2, β3,m], or [δ,−τ ] =
[β + δ,m− τ ]− [β,m].
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where the first line of equation 13 contains the capital value terms, and the
second line contains the interest accrual terms. The partial derivatives in the
first line of equation 13 may be calculated directly, i.e:

∂p (β,m)

∂β
=

∂ exp
£− ¡β0s+Q

¢ ·m¤
∂β

(14a)

=
∂ exp

£− ¡β0s+Q
¢ ·m¤

∂
¡
β0s+Q

¢ ∂
¡
β0s+Q

¢
∂β

(14b)

= −m · exp £− ¡β0s+Q
¢ ·m¤ s (14c)

= −m · p (β,m) s (14d)

where the second line applies the chain rule of differentiation (in a scalar sense,
because β0s + Q = R (m), which is a scalar function of m), and the third
line makes the substitution β0s+Q = s0β + Q (because both expressions are
the scalar function R (m)) and applies the result from Greene (1997) p. 51
that ∂[s0β]

∂β = s. Using similar techniques, the second partial derivative may be
calculated using the result from equation 14, i.e:

∂2p (β,m)

∂β∂β0
=

∂

∂β

·
∂p (β,m)

∂β0

¸
=

∂

∂β

·
∂p (β,m)

∂β

¸0
(15a)

=
∂
©−m · exp £− ¡β0s+Q

¢ ·m¤ s0ª
∂β

(15b)

= −m · ∂ exp
£− ¡β0s+Q

¢ ·m¤
∂
¡
β0s+Q

¢ ∂
¡
β0s+Q

¢
∂β

s0 (15c)

= −m · ©−m · exp £− ¡β0s+Q
¢ ·m¤ · ss0ª (15d)

= m2 · exp £− ¡β0s+Q
¢ ·m¤ ss0 (15e)

= m2 · p (β,m) ss0 (15f)

To illustrate that the elements of the second line of equation 13 represent
interest accrual terms, the first term may also be derived directly (which is
simplified by writing R (m) as the equivalent scalar function of m), i.e:

−∂p (β,m)
∂m

= −∂ exp [−R (m) ·m]
∂m

(16a)

= −∂ exp [−R (m) ·m]
∂ [R (m) ·m]

∂ [R (m) ·m]
∂m

(16b)

= exp [−R (m) ·m] · f (m) (16c)

= p (β,m) · f (m) (16d)
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where equation 16c uses the result that d[R(m)·m]
dm = f (m), where f (m) is the

forward rate as a function of maturitym.22 p (β,m)·f (m)·τ therefore represents
the interest earned on the PV of the unit cashflow over the horizon τ . The calcu-
lations for the remaining second-order terms of equation 13 are not shown here
for brevity, but in summary 1

2
∂p(β,m)
∂m2 · τ2 = p (β,m)

n
[f (m)]2 + ∂f(m)

∂m

o
· 12τ2,

which represents “interest on interest” over the horizon τ , and−τ ·
h
∂2p(β,m)
∂m∂β

i0
δ =

−τ · p (β,m) [m · f (m) s+mg+ s]0 δ, which represents “interest on changes in
PV” over the time-step τ , and g(φ,m) = ∂[s(φ,m)m]

∂m .23

B Numerical examples, and extensions of the VAO
model risk/return framework

B.1 Calculating yield curve exposures and relative value

Table 7 illustrates the calculation of the fitted market price, the YCEs, and
the relative value for a 2-year swap. Note that the FOYCE components are
expressed as the dollar sensitivity per 1 bp change in the associated coefficient,
which is analogous to BPV. For example, the PV of the 2-year security in table
7 would decrease (increase) by $200.05 for a 1 bp increase (decrease) in the
Level coefficient, and the PV would increase (decrease) by $114.55 for a 1 bp
increase (decrease) in the Slope coefficient.

[ Table 7 here ]
Table 8 illustrates the calculation of the fitted market price, the YCEs, and

the relative value for an arbitrary portfolio of swaps. Again, the FOYCE com-
ponents are expressed as the dollar sensitivity per 1 bp change in the associated
coefficient, so the PV of the portfolio in table 8 would decrease (increase) by
$144,600 for a 1 bp increase (decrease) in the Level coefficient, and the PV
would increase (decrease) by $21,053 for a 1 bp increase (decrease) in the Slope
coefficient.

[ Table 8 here ]

B.2 Value-at-Risk (VaR) calculations

Under the typical assumptions of a linear model and multi-variate normal dis-
tributions for changes in the underlying variables, as noted in Hull (2000)
pp. 345-351, the calculation of Value-at-Risk (VaR) within the VAO(3) model
framework is very straightforward. That is, the results in section 3.1 show
that the expected variance of the PV of the portfolio to a first-order ap-

22This result follows from the definition R (m) = 1
m

Z m

0

f (x) dx, and the second fundamen-

tal theorem of integral calculus noted, for example, in Thomas and Finney (1984) p. 286, i.e
d
dm
[R (m) ·m] = d

dm

Z m

0

f (x) dx = f (m).
23g(φ,m) are the foward rate modes originally used to calculate s(φ,m) in Krippner (2005),

i.e s(φ,m) = 1
m

Z m

0

g(φ, x)dx.
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proximation is var
½hPK

k=1Akλk

i0
δ

¾
. This may be expressed equivalently

as
hPK

k=1Akλk

i0
var(δ)

hPK
k=1Akλk

i
, where

PK
k=1Akλk is a 3-vector contain-

ing the FOYCE components for the portfolio, and var(δ) is a 3 × 3 variance-
covariance matrix for changes in the VAO(3)model coefficients over the required
horizon. For example, the calculation of var(δ) on a daily basis (i.e the vari-
ances and covariances of daily changes) over the full sample period noted in the
text gives the result:

var (δ) =

 38.7 28.1 8.6
28.1 103.4 −76.8
8.6 −76.8 103.4

bp2 (17)

Hence, the standard deviation of changes in the Level, Slope, and Bow coeffi-
cients are respectively 6.2, 10.2, and 10.2 bps. It is also evident that changes
in the coefficients do not occur independently; i.e there is material positive
covariance between changes in the Level coefficient and changes in the Slope
coefficient, and substantial negative covariance between changes in the Slope
coefficient and changes in the Bow coefficient.PK

k=1Akλk=(-$144,600, $21,053, -$11,061)
0 for the portfolio in table 8 of

the previous section. Hence, the standard deviation calculation for the daily
VaR of this portfolio is:

[σ (1-day)]2 =

vuut" KX
k=1

Akλk

#0
var (δ)

"
KX
k=1

Akλk

#
= $871, 552

The daily VaR corresponding to a given threshold level of significance x is
σ (τ) · Φ−1 (x), where Φ−1 (x) is the inverse normal distribution. A typical
threshold level significance is 1%, and Φ−1 (0.01) = −2.33. Hence, the 1% daily
VaR for the portfolio in table 8 is $871, 552×−2.33 = −$2, 027, 509; i.e there
is a 1% probability of a loss of $2,027,509 or more in a single day.

This procedure is analogous to the principal components approach noted
in Hull (2000) pp. 357-363, except the VAO(3) framework contains non-zero
covariances between changes in the modes. Note also that the VAO(3) frame-
work SOYCE components could be included to extend the VaR calculation to a
quadratic approximation, as with the model noted in Hull (2000) pp. 352-355.

Of course, one major critique of the typical VaR calculation is the assump-
tion of multi-variate normal distributions; in practice, the tails of the distri-
butions of financial market variables do not often accord closely to those of
the normal distribution. However, VaR calculations independent of the multi-
variate normal distributions can be still undertaken conveniently within the
VAO(3) framework. For example, the historical simulation approach noted in
Hull (2000) p. 356 would be undertaken using simulations based on the histori-
cal values of δ, and then applying those to the FOYCE vector (and the SOYCE
matrix in the quadratic approximation) of the current portfolio to build up a
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distribution of potential changes in portfolio value. Alternatively, samples of δ
could be generated via multi-variate time-series models of the Level, Slope, and
Bow coefficients (potentially allowing for generalised time-varying volatility),
which would again be applied to the FOYCE vector of the current portfolio to
build up a distribution of potential changes in portfolio value.

B.3 Level, Slope, and Bow durations (and convexities)

The risk measures in the VAO(3) framework may be standardised from outright
returns to proportional or percentage returns by dividing each risk measure
component by the portfolio MV. Hence, 1

MV

PK
k=1Akλ (1)k is the percentage

change in the value of the portfolio for a 1 percentage point change in the Level
coefficient (which is analogous to the traditional measure of duration, i.e the
percentage change in the portfolio value for a 1 percentage point level shift
in the yield curve). 1

MV

PK
k=1Akλ (2)k and

1
MV

PK
k=1Akλ (3)k are the Slope

and Bow durations respectively, which have the interpretation of the percentage
change in the portfolio MV given a percentage point change in the Slope or Bow
coefficients. These are analogous to the partial duration measures of Golub and
Tilman (2000) pp. 24-25. The VaRmay also be expressed in proportional terms.

As an example, the portfolio in figure 8 is composed of $150 million face-
value swaps. This has a MV of zero, but if it were backed by $150 million
of overnight cash, then the MV would be $150 million, and the FOYCE com-
ponents would remain essentially unchanged. The Level duration would then
be -$144600 per bp / $150 million × 1 percentage point per 100 bps = -9.64
(no unit); i.e approximately 9.6 years of traditional duration. The Slope and
Bow durations would respectively be 1.40, and -0.74. The proportional VaR is
$2,027,509 / $150 million = 1.35 (so there is a 1% probability of a loss of 1.35%
of portfolio value or more in a single day).

The second-order terms in the matrix
PK

k=1AkΩk can also be scaled by
1
MV to make the second-order sensitivities of portfolios with different market
values comparable. For example, 1

MV0

PK
k=1AkΩ (1, 1)k is analogous to the

traditional measure of convexity, while the remaining diagonal elements would
give the Slope and the Bow convexities, and the off-diagonal elements would
give the Level-Slope, Level-Bow, and Slope-Bow cross-term convexities. These
are analogous to the partial convexity measures of Golub and Tilman (2000)
pp. 24-25.

B.4 Portfolio optimisation with active trading

The framework developed in this article is also directly applicable to active
yield curve trading; i.e where the portfolio manager deliberately seeks to take
on YCEs relative to the initial/benchmark portfolio based on a view of how the
yield curve is likely to change. If the view is proven correct, then the PV and
hence MV of the portfolio will increase relative to the initial/benchmark port-
folio, but a relative loss will occur if the yield moves in the opposite direction.

As background, a minimum of four securities is required to perfectly match
any given MV and three FOYCE components. Hence, in principle, any four
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securities could be transacted to change the MV and three FOYCE components
to those desired. Given a set of four securities, the required face-values to trans-
act could be found by straightforward matrix algebra. However, the transaction
might not be allowed if it breached any constraints on the amounts of securities
allowed in the portfolio, so substantial trial and error on the selection of the
four trading securities (from the allowable universe) might be required before
an allowable transaction is found.

Conversely, the optimisation framework in this article automatically calcu-
lates the optimal feasible solution, if a solution exists. The optimisation problem
expressed relative to a benchmark or initial portfolio is a trivial variation on
the linear programme of equation 9, i.e:

Maximise: α0A1 (18a)

subject to: ΛA1 = ΛA0 + κ (18b)

and: A1,k,min ≤ A1,k ≤ A1,k,max (18c)

where κ represents the desired (or acceptable) differences between the MV
and FOYCEs of the alternative portfolio and the initial/benchmark portfo-
lio. For example, a pure relative slope/twist/curve trade may be specified by
κ = (0, 0, $x2, 0)

0, and a portfolio constructed with ΛA1 = ΛA0 + κ would re-
turn $x2 relative to the initial/benchmark portfolio for each bp increase in the
Slope coefficient; changes in the Level or Bow coefficients would deliver a zero
change relative to the initial/benchmark portfolio. Similarly, κ = (0, 0, 0, $x3)

0

represents a pure relative bow/barbell/butterfly/curvature trade, and hybrid
trades (i.e with several distinct exposures to the yield curve) could be specified
using several non-zero entries. Even the element for portfolio MV could be non-
zero if cash were being injected or withdrawn relative to the initial/benchmark
portfolio. Note that one possible output of the linear programme of equation
18 is “infeasible”. This would indicate that the desired MV and FOYCEs can-
not be obtained simultaneously given the portfolio constraints, and therefore κ
would need to be adjusted (or the constraints relaxed, if possible) to obtain a
feasible solution.

For active portfolio exposures, the VAO(3) model framework developed in
this article is highly desirable relative to a “black box” of variances and covari-
ances, for three reasons: (1) the intended exposure/s to yield curve changes
may be visualised using the VAO(3) modes; (2) the intended active risks may
be precisely specified and constructed, as noted above; and (3) the optimisation
framework determines the portfolio with the highest relative value that achieves
the desired exposure/s to yield curve changes. This will act to enhance portfolio
returns at the margin, independently of whether the active yield curve trading
is successful or not.
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C The complexities introduced by including trans-
actions costs

It is firstly worth noting that fixed transactions costs (e.g fixed overheads and/or
settlement charges) could be included in the linear programme of equation 9
without changing the nature of the optimisation problem. However, fixed trans-
actions costs are not a realistic description of the total trading costs incurred in
practice, given that most of those costs are variable (e.g brokerage costs propor-
tional to the face-values of the traded securities, and/or the proportional cost of
half a typical bid-ask spread from each security in the trade, which represents
the impact on portfolio MV that occurs when securities are transacted at the
bid or the ask rate and are then revalued at mid-rates).

Secondly, variable transactions costs cannot be included by simply subtract-
ing the appropriate cost of the trade that the optimisation model in this article
recommends. Rather, variable transactions costs must be included as an addi-
tional influence on the system to be optimised, otherwise the system might lead
to non-optimal transactions. For example, it might not be optimal to transact
a trade with positive relative value if the cost of the transaction outweighs that
relative value. On the other hand, it might still be optimal to transact the trade
if not trading would leave the YCEs outside of given tolerances.

In general, variable transactions costs are incurred regardless of the direction
of the transaction. Hence, these costs would enter into the objective function
as an absolute value, and so the objective function would become: Maximise:XK

k=1
αkAk − zk |∆Ak|, where ∆Ak represents the change to the face-value of

security k, zk represents the variable cost of transacting security k (e.g half the
typical bid-ask spread in the market price), and the absolute value is applied to
ensure the transaction cost will always be positive regardless of whether ∆Ak is
positive or negative. This makes the optimisation system non-linear, and highly
so because the absolute value function is discontinuous in the first derivative.
This in itself is not an insurmountable problem; non-linear programming could,
in principle, be used to provide a solution.

However, another complication that arises when transactions costs are in-
cluded in the optimisation is the potential path-dependency of the results. This
arises because the initial portfolio and transactions costs will determine the
initial optimal portfolio, and that optimal portfolio will then determine the fol-
lowing optimal portfolio, and so on. Hence, a different starting portfolio and/or
transactions costs and/or starting date for the optimisation might lead to differ-
ent outcomes. In this case, there is likely to be some ambiguity about whether
the excess returns in the optimised portfolio reflected the optimisation itself or
a fortuitous choice of the initial portfolio, transactions costs, and starting date.

Finally, another complication that arises when transactions costs are in-
cluded is that the optimal transaction is not necessarily to rebalance back to
the benchmark. Rather, as noted in Donohue and Yip (2003), if the portfolio is
within allowable thresholds (e.g risk tolerances) from the benchmark, then no
rebalancing transaction is required. If a portfolio is outside allowable thresh-
olds, then the optimal transaction is that which takes the portfolio back to the

25



allowable threshold. This is relatively easy to operationalise if there is only a
threshold in a single dimension (e.g a bond versus equity allocation in a bal-
anced portfolio), but it becomes increasingly complex as the number of dimen-
sions increases. The VAO(3) model has three dimensions, and would therefore
require three thresholds relating to allowable tolerances on Level, Slope, and
Bow exposure.

Almost needless to say then, but the resolution of the issues noted above
is well beyond the scope of this paper, and will therefore be explored by the
author in future work
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Figure 1: The VAO(3) model interest rate modes. φ = 1 for this illustration.
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Figure 2: Example of an initial yield curve (IYC), and changes to the Level
and Slope coefficients. The IYC is β (t)= (5.00, 2.00,−1.00)%, IYC + 50bps ×
Level mode is β (t)= (5.50, 2.00,−1.00)%, and IYC + 75bps × Slope mode is
β (t)= (5.00, 2.75,−1.00)%. For this illustration, φ = 1 and all other parame-
ters have been set to zero.
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Figure 3: Example of an initial yield curve (IYC), a change to the
Bow coefficient, and a simultaneous change to all coefficients. The
IYC is β (t)= (5.00, 2.00,−1.00)%, IYC + 75bps × Bow mode is
β (t)= (5.00, 2.00,−0.25)%, and IYC + the combined Level, Slope, and Bow
mode shifts is β (t)= (5.50, 1.25,−0.25)%. For this illustration, φ = 1 and all
other parameters have been set to zero.

-30

-15

0

15

30

45

60

75

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28 30

Maturity in years (m )

Y
ie

ld
 o

r p
ric

e 
re

si
du

al

-3.00

-1.50

0.00

1.50

3.00

4.50

6.00

7.50
Y

ie
ld

 in
 p

er
ce

nt

Yield residuals (LHS, bps)

Negated price residuals 
(LHS,  $000s/$m face)

Actual yields (RHS)

Fitted yields (RHS)

Figure 4: The actual and estimated US swaps curve on Monday 16 June
2003, and the associated yield residuals and negated price residuals. The esti-
mated coefficients and parameters are β (16-Jun-2003)= (6.16, 9.04,−4.27)%,
φ = 0.6173, θ1 = 0.8825%, σ1 = 1.03%, and v =
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Figure 5: The time series for three of the 16 rates used to define the US swaps
yield curve over the sample period.
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Figure 6: The time series of the estimated Level, Slope, and Bow coefficients
over the full sample. The estimated parameters are φ = 0.6173, θ1 = 0.8825%,
σ1 = 1.03%, and v =
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Figure 7: The time series of estimated yield residuals for three of the 16 rates
used to define the yield curve. The yield residuals are the actual yields less the
VAO(3) model fitted yields using the estimated coefficients and the parameters
in figure 6.
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Figure 8: Cumulative returns for the benchmark portfolio and the optimised
portfolio 4 (OP4). As detailed in section 4.3, OP4 uses in-sample estimates of
the parameters φ, θ1, v, and in-sample estimates of πk.
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OP4: I/S parameters,
I/S mean-adjustments
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Figure 9: Cumulative returns for the optimised portfolios OP2, OP4, and OP5.
“I/S parameters” means in-sample estimates of φ, θ1, and v, “P/S parameters”
means pre-sample estimates of φ, θ1, and v. “SRT mean-adjustments” means
simulated real time calculations of πk, and “I/S mean-adjustments” means in-
sample calculations of πk. Details are contained in section 4.3.
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Figure 10: Cumulative returns for the optimised portfolios OP1 and OP3.
These have no mean-adjustments, so πk = 0. “I/S parameters” means in-sample
estimates of φ, θ1, and v, “P/S parameters” means pre-sample estimates of φ,
θ1, and v. Details are contained in section 4.3.
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Attribution Sum Mean Std dev. Min. Max. Max. less 
min.

Actual return 42.852 0.027 0.659 -2.852 3.107 5.959
λ(1) FOYCE 18.652 0.012 0.660 -3.629 3.825 7.453
λ(2) FOYCE 8.308 0.005 0.213 -0.972 1.354 2.326
λ(3) FOYCE 6.301 0.004 0.140 -0.776 0.636 1.412
Total FOYCE 33.261 0.021 0.668 -2.936 3.086 6.021
Ω(1,1) SOYCE 4.048 0.003 0.006 0.000 0.085 0.085
Ω(1,2) SOYCE -0.738 0.000 0.002 -0.036 0.005 0.042
Ω(1,3) SOYCE 0.203 0.000 0.001 -0.014 0.010 0.025
Ω(2,2) SOYCE 0.256 0.000 0.000 0.000 0.006 0.006
Ω(2,3) SOYCE 0.272 0.000 0.000 -0.001 0.005 0.006
Ω(3,3) SOYCE 0.164 0.000 0.000 0.000 0.003 0.003
Total SOYCE 4.206 0.003 0.005 0.000 0.057 0.057
Relative value 1.516 0.001 0.006 -0.040 0.029 0.069
Interest accrual 3.870 0.002 0.007 -0.032 0.033 0.065

Table 1: Statistical summary of benchmark portfolio returns ($millions) and
ex-post attributions of those returns to the 11 components noted in section
4.2.

Total FOYCE Total SOYCE Relative value Interest accrual
Total FOYCE 0.4467 -0.0005 -0.0017 -0.0044
Total SOYCE -0.0005 0.0000 0.0000 0.0000
Relative value -0.0017 0.0000 0.0000 0.0000
Interest accrual -0.0044 0.0000 0.0000 0.0000

Total 0.4336 FOYCE/Total 1.0300

Table 2: Variances and covariances of the benchmark portfolio attributed re-
turns (“Total FOYCE” and “Total SOYCE” are aggregates of the individual
components contained in table 1).
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Attribution Sum Mean Std dev. Min. Max. Max. less 
min.

Actual return 57.902 0.036 0.658 -3.035 3.323 6.357
λ(1) FOYCE 18.652 0.012 0.660 -3.629 3.825 7.453
λ(2) FOYCE 8.308 0.005 0.213 -0.972 1.354 2.326
λ(3) FOYCE 6.301 0.004 0.140 -0.776 0.636 1.412
Total FOYCE 33.261 0.021 0.668 -2.936 3.086 6.021
Ω(1,1) SOYCE 4.058 0.003 0.006 0.000 0.093 0.093
Ω(1,2) SOYCE -0.738 0.000 0.002 -0.036 0.005 0.042
Ω(1,3) SOYCE 0.203 0.000 0.001 -0.014 0.011 0.025
Ω(2,2) SOYCE 0.256 0.000 0.000 0.000 0.006 0.006
Ω(2,3) SOYCE 0.272 0.000 0.000 -0.001 0.005 0.006
Ω(3,3) SOYCE 0.163 0.000 0.000 0.000 0.003 0.003
Total SOYCE 4.215 0.003 0.005 0.000 0.066 0.066
Relative value 16.375 0.010 0.035 -0.325 0.242 0.567
Interest accrual 4.051 0.003 0.007 -0.042 0.040 0.082

Table 3: Statistical summary of the returns ($millions) of optimised portfolio
OP4 and ex-post attributions of those returns to the 11 components noted
in section 4.2. OP4 uses in-sample estimates of the parameters φ, θ1, v, and
in-sample estimates of πk, as detailed in section 4.3.

Total FOYCE Total SOYCE Relative value Interest accrual
Total FOYCE 0.4467 -0.0006 -0.0027 -0.0043
Total SOYCE -0.0006 0.0000 0.0000 0.0000
Relative value -0.0027 0.0000 0.0012 0.0001
Interest accrual -0.0043 0.0000 0.0001 0.0000

Total 0.4328 FOYCE/Total 1.0319

Table 4: Variances and covariances of the optimised portfolio OP4 attributed
returns (“Total FOYCE” and “Total SOYCE” are aggregates of the indi-
vidual components contained in table 3).
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Optimised portfolio relative to the 
benchmark portfolio

Annual-
ised return 
($million)

Annual-
ised 

standard 
deviation 
($million)

Infor-
mation 
ratio

t-statistic

OP1 (P/S parameters, no M/A) 0.47 0.65 0.72 1.82 *
OP2 (P/S parameters, SRT M/A) 2.47 0.50 4.90 12.37 ***
OP3 (I/S parameters, no M/A) 0.09 0.69 0.13 0.33
OP4 (I/S parameters, I/S M/A) 2.35 0.55 4.26 10.78 ***
OP5 (I/S parameters, SRT M/A) 2.28 0.51 4.47 11.30 ***

Table 5: Statistical summary of the returns of the optimised portfolios (as
detailed in section 4.3) relative to the returns of the benchmark portfolio (as
detailed in section 4.2). “I/S” is in-sample, “P/S” is pre-sample, “M/A” is
mean-adjustment, and “SRT” is simulated real time. Details are in section
4.3.

Specified relative returns between 
optimised portfolios

Annual-
ised return 
($million)

Annual-
ised 

standard 
deviation 
($million)

Infor-
mation 
ratio

t-statistic

OP3 (I/S parameters, no M/A)
less OP4 (I/S parameters, I/S M/A)
OP5 (I/S parameters, SRT M/A)
less OP4 (I/S parameters, I/S M/A)
OP1 (P/S parameters, no M/A)
less OP4 (I/S parameters, I/S M/A)
OP2 (P/S parameters, SRT M/A)
less OP4 (I/S parameters, I/S M/A)
OP1 (P/S parameters, no M/A)
less OP2 (P/S parameters, SRT M/A)
OP1 (P/S parameters, no M/A)
less OP3 (I/S parameters, no M/A)
OP2 (P/S parameters, SRT M/A)
less OP5 (I/S parameters, SRT M/A)

0.38 0.21 1.78 4.49 ***

-0.08 0.48 -0.16 -0.40

-2.26 0.75 -3.02 -7.63 ***

-1.89 0.68 -2.76 -6.97 ***

0.12 0.48 0.24 0.61

-2.00 0.87 -2.30 -5.82 ***

0.19 0.19 1.02 2.58 ***

Table 6: Statistical summary of the returns of the optimised portfolios rela-
tive to each other (as discussed in section 4.3). “I/S” is in-sample, “P/S” is
pre-sample, “M/A” is mean-adjustment, and “SRT” is simulated real time.
Details are contained in section 4.3.
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Cashflow number CF1 CF2 CF3 CF4 CF5 Total
Cashflow date Wed. 18-

Jun-03
Thu. 18-
Dec-03

Fri. 18-
Jun-03

Mon. 20-
Dec-04

Fri. 20-
Jun-05

Cashflow maturity (m ) 0.01 0.51 1.01 1.52 2.01
Cashflow magnitude -1 0.0065 0.0065 0.0065 1.0065

Level mode value at m 1 1 1 1 1
Slope mode value at m -0.9983 -0.8587 -0.7444 -0.6496 -0.5724
Bow mode value at m -0.9949 -0.6040 -0.3289 -0.1354 -0.0046

Total volatility adjustment 0.000 0.002 0.007 0.014 0.020
Total risk adjustment 0.000 0.000 0.002 0.005 0.007

R (t ,m ) in percent 1.39 0.98 0.83 0.86 1.00
Unit present-value 0.9999 0.9950 0.9916 0.9870 0.9802

Cashflow present-value -0.9999 0.0064 0.0064 0.0064 0.9865 0.0058
Unit market-value 0
Unit price residual -0.0058
Unit yield residual 24.1

Unit λ vector CF1 CF2 CF3 CF4 CF5 Total
λ(1) -0.0055 -0.5043 -0.9998 -1.4954 -1.9737 -2.0005
λ(2) 0.0055 0.4331 0.7443 0.9714 1.1297 1.1455
λ(3) 0.0055 0.3046 0.3288 0.2025 0.0091 0.0091

Unit Ω matrix elements CF1 CF2 CF3 CF4 CF5 Total
Ω(1,1) 0.0000 0.1278 0.5040 1.1328 1.9873 2.0115
Ω(1,2) 0.0000 -0.1097 -0.3752 -0.7358 -1.1374 -1.1527
Ω(1,3) 0.0000 -0.0772 -0.1657 -0.1534 -0.0091 -0.0118
Ω(2,2) 0.0000 0.0942 0.2793 0.4780 0.6510 0.6607
Ω(2,3) 0.0000 0.0663 0.1234 0.0996 0.0052 0.0071
Ω(3,3) 0.0000 0.0466 0.0545 0.0208 0.0000 0.0008

λ vector Values Ω matrix Level Slope Bow
Level FOYCE -200.05 Level 201.15 -115.27 -1.18
Slope FOYCE 114.55 Slope -115.27 66.07 0.71
Bow FOYCE 0.91 Bow -1.18 0.71 0.08

Table 7: An example of the fixed cashflows of the 2-year swap (1.295%
quote on Monday 16 June 2003), and the calculation of the relative
value and YCEs using the 16 June 2003 VAO(3) coefficients and param-
eters, i.e β (t) = (6.16, 9.04,−4.27)%, φ = 0.6173, θ1 = 0.8825%, and
v =

¡
1.032, 1.652, 1.592

¢
%2.
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Security k 1 2 3 4
Security name 2-year 

swap
5-year 
swap

10-year 
swap

30-year 
swap

Portfolio 
potential

Face-value (A' vector) 70 10 5 65 value
Price residual vector ε' -0.006 0.000 0.025 -0.066 ε'A -4.612
Yield residual vector η' 24.1 0.7 -28.9 38.1 η'A 4024

Λ matrix Λ(1) Λ(2) Λ(3) Λ(4) Portfolio 
ΛΑ 

vector
Market-value 0 0 0 0 0

λ(1) -200 -475 -828 -1872 -144600
λ(2) 115 150 150 166 21053
λ(3) 1 -101 -132 -145 -11061

Ω(1,1) 201 1168 3895 22484 1506681
Ω(1,2) -115 -365 -663 -1508 -113071
Ω(1,3) -1 252 624 1475 101435
Ω(2,2) 66 115 119 130 14840
Ω(2,3) 1 -78 -106 -117 -8891
Ω(3,3) 0 55 101 113 8435

Table 8: An example of an arbitrary portfolio composed of 2, 5, 10, and
30-year swaps as at Monday 16 June 2003. The 16 June 2003 VAO(3)
coefficients and parameters are β (t) = (6.16, 9.04,−4.27)%, φ = 0.6173,
θ1 = 0.8825%, and v =

¡
1.032, 1.652, 1.592

¢
%2.
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