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Abstract 
 

This article uses a dynamic multi-factor model of the yield curve with a rational-

expectations, general-equilibrium-economy foundation to investigate the uncovered 

interest parity hypothesis (UIPH).  The yield curve model is used to decompose the 

interest rate data used in the UIPH regressions into components that reflect rationally-

based expectations of the cyclical and fundamental components of the underlying 

economy.  The UIPH is not rejected based on the fundamental components of interest 

rates, but is soundly rejected based on the cyclical components.  These results provide 

empirical support for suggestions in the existing theoretical literature that rationally-

based interest rate and exchange rate dynamics associated with cyclical inter-linkages 

between the economy and financial markets may contribute materially to the UIPH 

puzzle. 
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1 Introduction

This article uses a dynamic multi-factor model of the yield curve with a rational-expectations,
general-equilibrium-economy foundation to investigate the uncovered interest parity hypothesis
(UIPH), i.e the proposition that exchange rates should appreciate/depreciate at a pace that offsets
the interest rate discount/premium available between the underlying currencies. The broad mo-
tivation is to provide an empirical perspective on the potential role that rationally-based cyclical
interest rate dynamics may play in the puzzling results from prior empirical tests of the UIPH. To
put this motivation adequately into context, it is useful to provide a brief overview of the existing
UIPH literature, and that of its parallel specification as the forward rate unbiasedness hypothesis
(FRUH).1

Firstly, it is well established that the UIPH/FRUH is typically rejected based on the standard
regression of lagged changes in exchange rates on the corresponding interest rate differentials or
forward exchange premia.2 Indeed, rather than yielding the expected slope coefficient of 1, such
regressions frequently produce significantly negative estimates, implying that exchange rates move
contrary to the predictions of the UIPH/FRUH. That said, recent empirical investigations based
on longer horizons/maturities, rather than the weekly, monthly, or quarterly data often used,
have been more supportive of the UIPH/FRUH. For example, Alexius (2001) generally does not
reject the UIPH using 10-year interest rates and exchange rate changes over the corresponding
10 year horizon. Meredith and Chinn (2004) reports similar results using 5- and 10-year interest
rates over the corresponding horizons, while rejecting the UIPH based on 3-, 6-, and 12-month
maturities/horizons. Similarly, Razzak (2002) generally does not reject the FRUH on a 1-year
horizon, but rejects it for the 1-month horizon.

These mixed empirical results have prompted further bodies of literature, as summarised in the
survey of Sarno (2005), on how the UIPH/FRUH might be reconciled with the data. For example,
Fama (1984) originally proposed that deviations of the data from the UIPH/FRUH might reflect
time-varying risk premia, although subsequent investigations using standard finance/economic mod-
els with plausible parameter values have not been able to establish satisfactory sources of those risk
premia or the required magnitude of variation.3 A second class of proposals with some empirical
support is that failures of the UIPH/FRUH might reflect departures from the rational expectations
assumed in the formulation of the UIPH/FRUH.4 Another strand of the literature suggests that
the puzzling results from the standard regression tests of the UIPH/FRUH might be largely a
statistical artifact arising from the time-series properties of the data over finite samples.5

The strand of literature most closely connected to this article suggests that rationally-based
interest rate and exchange rate dynamics associated with cyclical interlinkages between the econ-
omy and financial markets may be an important factor contributing to the UIPH/FRUH puzzle.
McCullum (1994) originally illustrated this concept by augmenting the UIPH relationship with a

1The FRUH proposes that exchange rates should appreciate/depreciate at a pace that matches the forward ex-
change premium/discount. Section 2 shows that the FRUH is equivalent to the UIPH because the forward exchange
premium/discount is derived directly from interest rate differentials under covered interest parity.

2The frequently-referenced surveys summarising those results are Hodrick (1987), Froot and Thaler (1990), and
Engle (1996). Recent examples of empirical investigations that reject the UIPH/FRUH are Liu and Maynard (2005),
Wu (2005), and Zhou and Kutan (2005).

3See Sarno (2005) pp. 676-678. Wu (2005) is a recent addition showing that time-varying interest rate risk alone
cannot feasibly explain the failure of the UIPH. The latter result is also implied in the discussion in section 4 of this
article.

4See Sarno (2005) pp. 678-679. The heterogenous agent model of the exchange rate market in Grauwe and
Grimaldi (2006) is a recent theoretical addition to this literature.

5For example, Baillie and Bollerslev (2000) shows via simulation that persistent time-varying volatility in the
data would lead to a diffuse distribution for the FRUH regression slope coefficient, and Maynard and Phillips (1998)
considers the implications of I(0) changes in the exchange rate and I(1) forward exchange premia. Empirically,
Sarno (2005) pp. 679-683 discusses that there is better support for the FRUH based on long-run cointegrating
relationships between the levels of the exchange rate and the forward exchange rate, and Delcoure, Barkoulas, Baum
and Chakraborty (2003) is a recent addition to that literature.
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simple monetary policy reaction function to represent the smoothing of the path of interest rates
and exchange rates by the central bank. Solving the two-equation stochastic system analytically
under rational expectations then produces an expected negative slope coefficient for the standard
UIPH regression. Meredith and Chinn (2004) expands the McCullum (1994) approach into a
more realistic macroeconomic model that includes the UIPH, a Taylor rule monetary policy reac-
tion function, a Phillips curve inflation relationship, an investment-savings output equation, and a
short-maturity and long-maturity interest rate to represent the yield curve. Applying the standard
UIPH regression to artificial interest rate and exchange rate data generated from stochastic simula-
tions of that calibrated model under rational expectations reproduces the typical empirical results
discussed above; i.e negative slope coefficients and rejections of the UIPH for short horizons, but
slope coefficients near 1 and non-rejections of the UIPH for longer horizons. Lim and Ogaki (2003)
obtains a similar pattern of results by simulating a rational-expectations open-economy model that
includes an exogenous domestic interest rate process with temporary and persistent innovations.

While these theoretical and simulation results illustrate that deviations of exchange rate and
interest rate data from the UIPH can occur without recourse to time-varying risk premia and/or
non-rational expectations, that strand of literature currently has no direct empirical support. In-
deed, the illustrative model of McCullum (1994) has been rejected in a subsequent empirical inves-
tigation by Mark and Wu (1996). The models of Lim and Ogaki (2003) and Meredith and Chinn
(2004) could in principle be tested empirically, but the estimation of rational expectations models
is practically challenging, and the number of parameters in the Lim and Ogaki (2003) and Meredith
and Chinn (2004) models would hinder inference in any case.

An alternative empirical approach to investigating how material rationally-based cyclical in-
terest rate dynamics might be for the UIPH puzzle is to use the augmented Nelson-Siegel (ANS)
model of the yield curve from Krippner (2006). The ANS model is an intertemporally-consistent
and arbitrage-free version of the popular, parsimonious, and easy-to-apply Nelson and Siegel (1987)
approach that represents the yield curve via component functions of maturity. Krippner (2005)
provides an economic foundation for the ANS model by explicitly relating it to a generic dynamic
general-equilibrium economy that embeds rational expectations and constant risk premia. That
foundation therefore provides the basis for using the ANS model to decompose the interest rates
of any maturity into components that reflect the cyclical and fundamental factors in the underly-
ing economy under rational expectations. The component data can then be used directly in the
empirical tests of the UIPH to assess the relative contributions that rationally-based cyclical and
fundamental components of interest rates make to the UIPH puzzle.

The article proceeds as follows: section 2 outlines the UIPH/FRUH and the ANS model of the
yield curve, and then details how the ANS model can be used to investigate the UIPH. Section 3
describes the data and discusses points relevant to the empirical estimation. Section 4 discusses
the empirical results, and section 5 summarises and concludes.

2 The UIPH/FRUH and the ANS model of the yield curve

This section firstly outlines the theory underlying the UIPH/FRUH. Section 2.2 proceeds to discuss
the essential aspects of the ANS model relevant to this article, and section 2.3 then discusses how
the ANS model is used in this article to investigate the UIPH/FRUH. Note that all of the notation
and examples refer explicitly to the Canadian (CA) and United States (US) data subsequently used
in the empirical application of section 3. Of course, the approach applies quite generally to the
exchange rates and yield curves of any currency pair, with the potential exception (as discussed in
section 2.2) when the interest rates of one or both of the currencies are close to zero.

2.1 The UIPH and the FRUH

The UIPH and the FRUH both originate from the covered interest parity relationship, which defines
the forward exchange rate as:
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et,m = et +m
¡
RUSt,m −RCAt,m

¢
(1)

where et is the natural logarithm of the nominal exchange rate between the Canadian dollar (CAD)
and the United States dollar (USD) at time t (defined as the number of USDs per CAD, so a rise
in et is an appreciation of the CAD against the USD); et,m is the natural logarithm of the forward
CAD/USD exchange rate at time t for settlement at t+m years; and RCAt,m and R

US
t,m are respectively

the annualised continuously-compounding zero-coupon interest rates for Canada and the US at time
t for maturity t+m years.

Equation 1 precludes outright arbitrage opportunities between the forward exchange market
and the interest rates of the two currencies. That is, if covered interest parity did not hold,
then it would be possible to arbitrage between the forward exchange rates et,m and the equivalent
alternative of directly borrowing and investing at the prevailing exchange rate and interest rates
on the underlying currencies.6 Empirically, covered interest parity is well-supported by the data,
as noted in the survey of Sarno and Taylor (2003) chapter 2.

Assuming rational expectations, the ex-ante relationship between et and et,m is Et [et+m] = et,m,
where Et is the expectations operator conditional on information available at time t. Substituting
Et [et+m] for et,m in equation 1 and re-arranging then gives the UIPH, i.e:

Et [et+m]− et = m
¡
RUSt,m −RCAt,m

¢
(2)

i.e the expected change in the exchange rate over the horizonm should equal the prevailing difference
in interest rates with a time to maturity of m. Alternatively, re-arranging equation 1 to express
m
¡
RUSt,m −RCAt,m

¢
as the forward exchange premium et,m− et, and substituting that into equation 2

gives the FRUH specification, i.e Et [et+m]− et = et,m − et.
The UIPH is typically tested by estimating the following equation using ex-post exchange rate

and interest rates data:

∆et,m = am + bm ·m
¡
RUSt,m −RCAt,m

¢
+ vt,m (3)

where ∆et,m is et+m− et (i.e the change in et from t to t+m) lagged m years; am is the estimated
constant which allows for any systematic risk premia; bm is the estimated slope parameter; and the
innovation terms vt,m represent unanticipated differences between expected and realised exchange
rates, which should be distributed with mean zero. The estimation of am and bm is typically
the primary consideration in empirical tests of the UIPH/FRUH, and this article follows that
precedent.7 Hence, if the UIPH holds, then a statistical test on the estimated parameter bm should
not reject the theoretical value of 1, while the estimated parameter am may be non-zero to allow
for any systematic premia that may arise because the exchange rate and interest rate data are
observed in a non-risk-neutral environment. Similarly, the FRUH is typically tested by estimating
the equation ∆et,m = am + bm · (et,m − et) + vt,m using lagged ex-post exchange rate and forward
exchange rate data.

As discussed in the introduction, the empirical estimates of bm based on the UIPH and FRUH
specification over short horizons are typically significantly less than the theoretical values of 1 and
are often significantly negative, while the estimates of bm based on data over long horizons are
not significantly different from the theoretical value of 1. Given these mixed empirical results, the
following two sections discuss the ANS model of the yield curve and how it might be applied to
provide an empirical perspective on the UIPH/FRUH. Note that from this point onward, the article
will work exclusively with the UIPH specification.8

6That is, equivalent under the typical assumptions in the literature that capital markets are unconstrained, returns
are not distorted by tax considerations, and transactions costs are negligible.

7The additional test of whether the information available at time t −m was used efficiently is that vt,m should
exhibit no serial correlation beyond the moving-average correlation induced when the horizon m is greater than the
frequency of the data, but that aspect is not tested in this article.

8Testing the FRUH would require an additional transformation of the interest rate differentials into forward
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2.2 The ANS model of the yield curve

The yield curve model used for this article is the ANS model from Krippner (2006). At any point in
time t, the ANS model represents the annualised continuously-compounding zero-coupon interest
rate Rt,m (ANS) as a function of time to maturity m, i.e:

Rt,m (ANS) =
σ1θ1m

2
+

3X
n=1

βn (t) · sn(m)−
3X

n=1

σ2n · un(m) (4)

where the core of the ANS model is the sum of the time-varying coefficients βn (t) applied to the
time-invariant modes sn(m). The latter are simple functions of maturity, i.e:

s1(m) = 1 (5a)

s2(m) =
1

φm
[exp(−φm)− 1] (5b)

s3(m) = − 1

φm
[2φm exp(−φm) + exp(−φm)− 1] (5c)

where φ is a constant parameter that alters the rate of decay in the exponential functions. Figure
1 plots these three sn(m) functions, which Krippner (2006) names the Level, Slope, and Bow
modes based on their shapes. Also following the terminology in Krippner (2006), the coefficients
β1 (t), β2 (t), and β3 (t) are called the Level, Slope, and Bow coefficients, and the coefficients βn (t)
multiplied into the modes sn(m) are called the Level, Slope, and Bow components of the yield curve.
The parameters θ1 and σn and the functions un(m) account for the market prices and quantities
of risk for each component of the yield curve model. These are required to make the ANS model
intertemporally-consistent and arbitrage-free, but a detailed understanding of these elements is not
required for this article. Readers requiring more detail are referred to Krippner (2006).

[ Figure 1 here ]
Given an observation of yield curve data (i.e the market-quoted yields or prices of a group of fixed

interest securities with a span of maturities but otherwise similar characteristics, all observed at
time t), applying the ANS model therefore decomposes that observation into estimated Level, Slope,
and Bow components. There will also be a series of estimated yield residuals, i.e the differences
between the actual market-quoted yields and the yields derived from the ANS model, which are
typically very small. For example, anticipating the discussion of the data in section 3, figure 2
illustrates the US yield curve data observed for February 2004, the associated yield curve estimated
using the ANS model, and the estimated yield residuals for the non-coupon-paying securities.

[ Figure 2 here ]
For the purposes of this article, the essential intuition of how Krippner (2005) relates the

ANS yield curve model to a generic dynamic general-equilibrium model of the economy is best
illustrated within a deterministic environment, followed by a brief discussion of the role and effect
of the stochastic components. The economic model in Krippner (2005) is based on J real factors of
production (e.g capital, labour, etc., potentially by industry sector), each with its own associated
inflation rate. Each real factor and inflation rate follows a standard Vasicek (1977) mean-reverting
process, with the following deterministic component:

Et [dqj (t)] = −κj
£
qj (t)− µj (t)

¤
dt (6)

where Et is the expectations operator as at time t; qj (t) for j = 1 to J are the real state variables
representing instantaneous growth on returns to the factors of production in the economy at time
t; κj are positive constant mean-reversion parameters; and µj (t) are the steady-state (i.e long-run)
values of qj (t) as at time t. qj (t) for j = J+1 to 2J are the inflation state variables, which have the

exchange rate data, and the subsequent empirical estimations for the FRUH would be identical to those for the UIPH
in any case.
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analogous parameters to the real factors. The instantaneous short rate at time t is the sum of all
the real and inflation state variables, i.e r (t) =

P2J
j=1 qj (t), and that quantity also equals nominal

output (given it is the sum of returns to the factors of production and their rates of inflation).
Equation 6 is an ordinary differential equation, with the solution Et [qj (t+m)] = µj (t) +£

qj (t)− µj (t)
¤ · exp (−κjm), where m represents a future horizon from time t. Hence, the current

state variables and their steady-state values define the expected path of the state variables and
therefore the expected path of the short rate Et [r (t+m)] as a function of future time m. In a
deterministic environment, Et [r (t+m)] equates to the instantaneous continuously-compounding
forward rate curve as a function of maturity m, i.e:9

f (t,m) =
2JX
j=1

µj (t) +
2JX
j=1

£
qj (t)− µj (t)

¤ · exp (−κjm) (7)

Using the definitionRt,m =
1
m

Rm
0 f (t,m) dm then gives the continuously-compounding zero-coupon

curve as:

Rt,m =
2JX
j=1

µj (t)−
2JX
j=1

£
qj (t)− µj (t)

¤ · 1
κj
exp (−κjm) (8)

Comparing equation 8 back to the deterministic version of the ANS model (i.e setting the
market prices and quantities of risk to zero) shows that:

β1 (t) · s1(m) = β1 (t) =
2JX
j=1

µj (t) (9)

Hence, the Level component of the ANS yield curve at time t reflects the market’s current assessment
of the long-run equilibrium nominal interest rate consistent with underlying economic fundamentals
(specifically, long-run nominal output growth, which is in turn the sum of the steady-state variables
for the real factors of production and their long-run inflation rates).

The “remainder” of the ANS yield curve at time t is:

εt,m +
3X

n=2

βn (t) · sn(m) = −
2JX
j=1

£
qj (t)− µj (t)

¤ · 1
κj
exp (−κjm) (10)

where εt,m is the estimated yield residual for the zero-coupon security of maturity m. This “non-
Level” component of the ANS model at time t reflects the market’s current expectation of the
future path of the instantaneous short rate (as a function of future horizon m from time t) relative
to the long-run equilibrium interest rate. Or in other words, the non-Level component of the ANS
yield curve represents the expected cyclical component of interest rates consistent with the economy
returning to its underlying economic fundamentals (specifically, the path of nominal output growth
returning to long-run nominal output growth).

Regarding the stochastic components of the economic model, Krippner (2005) allows the steady-
state values µj (t) to evolve as low-variance Brownian motions. This allows for gradual unantici-
pated changes to the expected long-run values of the state variables over time, and the aggregation
of innovations in µj (t) matches the Gaussian dynamics assumed for the Level component of the
ANS model. Similarly, the state variables qj (t) evolve as mean-reverting Gaussian stochastic pro-
cesses, which allows for unanticipated “shocks” to the prevailing state variables, and the aggregation
of the innovations in qj (t) match the Gaussian dynamics assumed for the non-Level components

9 In a stochastic environment, additional terms involving the market prices and quantities of risk for each component
of the economy are required to make the forward rate and interest rate curves intertemporally-consistent and arbitrage
free. Krippner (2005) shows that those additional terms match the parameters and functions of the ANS model
relating to the market prices and quantities of risk for each component of the yield curve.
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of the ANS model.10 Note that, because the dynamics of the ANS model and economic model
are both Gaussian, this implies a non-zero probability of negative interest rates. That aspect can
safely be ignored in practice, as is done when models based on the Vasicek (1977) specification are
applied to interest rate data, unless the interest rates of some maturities are already materially
close to zero.

Applying the ANS model to the yield curves of two economies therefore provides the basis for
decomposing the interest rates for those economies into rationally-based fundamental and cyclical
components. More formally, appendix A details how two economies linked by a bilateral exchange
rate under conditions more general than those assumed in Krippner (2005) will result in ANS yield
curves for both economies. Generically specifying an economic model in this way and condensing
it into just the three coefficients and several parameters of the ANS model of the yield curve for
each economy has two distinct advantages over the structural economic models proposed by Lim
and Ogaki (2003) and Meredith and Chinn (2004). Firstly, it avoids the need to explicitly specify
and model the myriad of dynamic inter-relationships that may exist within the economy (such
as Phillips curve relationships, monetary policy reaction functions, monetary policy credibility
effects, exchange rate influences on inflation and/or the real economy, etc.). In effect then, the
ANS model allows the decomposition of the interest rate data into its fundamental and cyclical
components while remaining agnostic about the precise dynamics that generate those components
in the underlying economy. The second advantage of the ANS model approach is parsimony, which
makes the ANS model very straightforward to apply in practice (like the Nelson and Siegel (1987)
model on which the ANS model is based). That said, one disadvantage of the ANS model approach
is that it offers no direct means of decomposing the exchange rate data used to test the UIPH into
its cyclical and fundamental components. This is unfortunate, because if such a decomposition
were possible, it would enable a more comprehensive series of UIPH tests based on the cyclical and
fundamental components of both interest rates and exchange rates.11

2.3 Investigating the UIPH using the ANS model

The first use of the ANS model to investigate the UIPH is simply as a convenient means of generating
zero-coupon interest rate data from market-quoted yield curve data that are typically coupon-
bearing for maturities of one year and beyond. That is, once estimated from the available yield
curve data (as in the example of figure 2), the ANS model provides a continuous zero-coupon
interest rate function for any maturity over the interval 0 ≤ m < ∞. Tests of the UIPH can then
be undertaken using a time series of estimated zero-coupon interest rates for an arbitrary given
maturity m, i.e:

∆et,m = am + bm ·m
£
RUSt,m (ANS)−RCAt,m (ANS)

¤
+ vt,m (11)

Note that the use of estimated zero-coupon interest rate data is common practice in the literature.12

However, given both market-quoted and estimated zero-coupon interest rates are available for the 3-
and 6-month horizons/maturities investigated in this article, it is worthwhile undertaking the UIPH
tests with both sets of data to ensure that using estimated interest rate data does not materially
influence the empirical results.

10Both sides of equation 10 decay asymptotically to zero by maturity, which is consistent with the expectation that
nominal output growth will converge to steady-state nominal output growth in the long-run.
11Such tests may be revealing in cases where much of the cyclicality of the underlying economy is reflected in

deviations of the exchange rate from its fundamental value, or as alluded to in the discussion of section 3, where
monetary authorities deliberately attempt to influence the exchange rate away from its fundamentals. For example,
Mark and Wu (2004) shows that unanticipated exchange rate interventions within a rational expectations framework
can produce deviations from the UIPH without recourse to time-varying risk premia and/or non-rational expectations.
12For example, the analysis in Soto (2001), Schmidt and Kalemanova (2002), and Fang and Muljono (2003) is

based on interest rates estimated using the Nelson and Siegel (1987) approach. The method of “bootstrapping” (e.g
see Hull (2000) p. 150), is an alternative method of estimation that precisely replicates the market-quoted yields,
but longer maturity yields are subject to distortions due to “errors” in the data (e.g bid-ask bounce or stale quotes).
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The estimated ANS model of the yield curve can then be used to decompose the zero-coupon
interest rates used to test the UIPH. The first step of the decomposition is to remove the ANS-
model-estimated market prices of risk and volatility components, i.e σ1θ1m

2 −P3
n=1 σ

2
n · un(m),

from the interest rate data. The UIPH tests based on risk-neutral volatility-adjusted (RNVA)
zero-coupon interest rates can be expressed as:

∆et,m = am+bm ·m
"(

εUSt,m +
3X

n=1

βUSn (t) · sUSn (m)

)
−
(
εCAt,m +

3X
n=1

βCAn (t) · sCAn (m)

)#
+vt,m (12)

where zero-coupon estimates of εUSt,m and ε
CA
t,m will only be available for the 3- and 6-month maturities

in this article (given only those securities are non-coupon-bearing). In the absence of zero-coupon
estimates for the other maturities, εUSt,m and εCAt,m are simply set to zero, and the time-varying com-
ponent of equation 12 becomes the RNVA ANS model interest differential

P3
n=1 β

US
n (t) · sUSn (m)−P3

n=1 β
CA
n (t) · sCAn (m).13

The RNVA interest rates for any given maturity can now be decomposed into components
representing the rationally-based fundamental and cyclical components in the underlying economy.
With reference to the discussion in section 2.2, the fundamental component is simply the Level
component of the ANS model, and the cyclical component is the non-Level component of the ANS
model (i.e the ANS Slope plus Bow components, and the yield residuals εt,m for the 3- and 6-month
securities).

As an example of using the ANS model for the decompositions discussed above, figure 3 il-
lustrates the RNVA ANS interest rate curve and the Level and Slope plus Bow components of
that curve for the February 2004 US yield curve in figure 2. The estimated RNVA ANS in-
terest rate curve is RUSFeb-2004,m (ANS) =

P3
n=1 β

US
n (Feb-2004) · sUSn (m), the Level component of

that curve is βUS1 (Feb-2004) · sUS1 (m) = βUS1 (Feb-2004), and the Slope plus Bow component is
βUS2 (Feb-2004) · sUS2 (m) + βUS3 (Feb-2004) · sUS3 (m). Figure 3 also highlights the RNVA ANS in-
terest rate for the 2-year maturity; i.e m = 2. This has the value

P3
n=1 β

US
n (Feb-2004) · sUSn (2) =

1.70%, with the Level component βUS1 (Feb-2004) = 6.47%, and the Slope plus Bow component
βUS2 (Feb-2004) · sUS2 (2) + βUS3 (Feb-2004) · sUS3 (2) = −4.77%.

[Figure 3 here ]
Continuing the example, figure 4 then illustrates the difference between the estimated RNVA

ANS yield curves for the US and Canada as at February 2004, and the difference between the ANS
Level and non-Level components of the US and Canadian RNVA ANS yield curve. As highlighted
in figure 4, the 2-year RNVA interest rate differentials and the Level and non-Level components of
those differentials are just the respective function values at m = 2.

[Figure 4 here ]
The example above illustrates how an interest rate differential and its Level and non-Level

components are generated at a single point in time. Repeating the estimation of the ANS model
for each observation of the Canadian and US yield curve data over time allows the generation of
a time series of interest rate differentials of the required maturity, and the Level and non-Level
components of those interest rate differentials. That data can then be used in conjunction with
changes in the exchange rate over the horizon corresponding to the interest rate maturity to test
the UIPH for that horizon.

The different estimates of interest rate data and the decomposition of those interest rate into
components provides many different permutations of UIPH tests, particularly for the 3- and 6-
month maturities where estimates of the yield residuals εt,m are available. Hence, for the 3- and 6-
month horizons, tests of the UIPH are undertaken for: (1) the market-quoted zero-coupon interest
rate (equation 3); (2) the interest rate from the ANS model (equation 11); and (3) the RNVA

13The yield-to-maturity of a coupon-bearing security is effectively an internal rate of return on the coupons and
principle. Similarly, the estimated yield residual for a coupon-bearing security will be on an internal rate of return
basis, which is not zero-coupon.
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interest rate (equation 12). The additional UIPH tests on the underlying interest rate components
are as follows: (4) the Level component and non-Level components, with the latter separated out
as the Slope plus Bow components and the yield residual components, i.e:

∆et,m = am + wm ·m
£
βUS1 (t)− βCA1 (t)

¤
+ ym ·m

"
3X

n=2

βUSn (t) · sUSn (m)

−
3X

n=2

βCAn (t) · sCAn (m)

#
+ zm ·m

£
εUSt,m − εCAt,m

¤
+ vt,m (13)

(5) the Level component and non-Level components, i.e:

∆et,m = am + wm ·m
£
βUS1 (t)− βCA1 (t)

¤
+ xm ·m

"(
εUSt,m +

3X
n=2

βUSn (t) · sUSn (m)

)

−
(
εCAt,m +

3X
n=2

βCAn (t) · sCAn (m)

)#
+ vt,m (14)

(6) the Level component only, i.e:

∆et,m = am + wm ·m
£
βUS1 (t)− βCA1 (t)

¤
+ vt,m (15)

(7) the non-Level components only, separated out as the Slope plus Bow components and the yield
residual components, i.e:

∆et,m = am+ym ·m
"

3X
n=2

βUSn (t) · sUSn (m)−
3X

n=2

βCAn (t) · sCAn (m)

#
+zm ·m

£
εUSt,m − εCAt,m

¤
+vt,m (16)

and (8) the non-Level component of the RNVA ANS model only, i.e:

∆et,m = am+xm ·m
"(

εUSt,m +
3X

n=2

βUSn (t) · sUSn (m)

)
−
(
εCAt,m +

3X
n=2

βCAn (t) · sCAn (m)

)#
+vt,m (17)

For horizons/maturities of one year and beyond, estimated residuals are not available. Hence,
equations 3, 13, and 16 cannot be estimated, and the estimation of the other equations proceeds
with εt,m = 0.

3 The data and empirical estimation

The data used for the analysis in this article are the month-end CAD/USD exchange rates, and
month-end Canadian and US yield curve data. These data were chosen for the investigation for
several reasons. Firstly, the CAD/USD exchange rate is set within a relatively unhindered floating
regime and is the only currency pair within the Group of Seven (G7) currencies that has been
relatively untainted by major currency market events in recent decades. Regarding the other G7
currencies, Germany, France, and Italy used the European Monetary System and subsequently
adopted the euro currency in 1999, Japan has been subject to some degree of exchange rate man-
agement including occasional large interventions as recently as 2003,14 and the United Kingdom

14Also, in reference to the discussion in section 2.2, short-term Japanese interest rates have been held at zero almost
continuously since the late-1990s, which would invalidate the application of the ANS model.
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(UK) was subjected to major foreign exchange speculation and subsequent withdrawal of the UK
pound from the European Monetary System in 1992. Secondly, the US and Canada central bank
websites readily provide long time series of detailed market-quoted yield curve data (as detailed
below), while the data for other currencies is limited. That is, long time series of market-quoted
data generally consist of only two points on the yield curve (e.g a 90-day rate and a 10-year bond
yield), while more comprehensive market-quoted yield curve data is only available for relatively
short periods.15

The CAD/USD exchange rate data is taken from the online Federal Reserve Economic Database
(FRED) available on the Federal Reserve Bank of St. Louis website. The US yield curve data are
constant maturity interest rates obtained from the FRED database, with the specific series being
the federal funds rate, the 3-month and 6-month Treasury bill rates (both zero-coupon securities),
and the 1-year, 2-year, 3-year, 5-year, 7-year, 10-year, and 20-year or 30-year constant maturity
bond rates (all semi-annual coupon-paying securities).16 The Canadian yield curve data used in
the empirical application are constant maturity interest rates obtained from the Bank of Canada
website, with the specific series being the Bank of Canada policy rate, the 3-month and 6-month
Treasury bill rates (both zero-coupon securities), and the 2-year, 3-year, 5-year, 7-year, 10-year,
and 25-year or 30-year constant maturity bond rates (all semi-annual coupon-paying securities).17

The sample period is January 1985 to December 2005, giving 252 monthly observations of the
yield curve. The start of this period was chosen to be beyond the late-1970s/early-1980s structural
change for US yield curve data that has been previously documented in the literature.18 December
2005 was the last month available at the time the analysis was undertaken.

The method for estimating the ANS model from a time series of yield curve observations is
detailed in appendix C of Krippner (2006). An example of the output from that estimation has
already been discussed in section 2, and the estimated ANS parameters for the US are φ = 0.51,
θ1 = 1.48%, σ1 = 0.81%, σ2 = 1.72%, and σ3 = 1.32%, while those for Canada are φ = 0.44,
θ1 = 1.67%, σ1 = 1.12%, σ2 = 3.01%, and σ3 = 2.25%. As an example of the data used for
testing the UIPH in this article, figure 6 illustrates the time series of the RNVA 1-year interest
rate differential and annual changes in the CAD/USD lagged one year (i.e ∆et,1). Figures 7 and 8
respectively illustrate the Level and non-Level components of the RNVA ANS 1-year interest rate
and ∆et,1. For the 3-month, 6-month, and 1-year horizons, figure 8 plots the difference between
lagged ex-post changes in the exchange rate, and the ex-ante changes predicted by the UIPH.

[ Figures 5, 6, 7, and 8 here ]
While economic theory would suggest that the data should be stationary in the long-run (be-

cause exchange rates cannot appreciate or depreciate indefinitely, and interest rate differentials
should be bounded by relative economic fundamentals), an inspection of figures 6, 7, and 8 sug-
gests that the data did have relatively high persistence over the sample period. Indeed, the results
contained in table 1 for the 1-year horizon data suggest that the hypothesis of stationarity is fre-
quently rejected, or alternatively the hypothesis of a unit root frequently cannot be rejected over
the sample period. However, the results in table 2 indicate that the data is at least cointegrated.

[ Table 1 here: 1-year unit root and KPSS tests ]
[ Table 2 here: 1-year cointegration tests ]
The unit root and cointegration results for the 1-year horizon are typical for the other horizons

investigated in this article. Hence, this article follows the advice in Hamilton (1994) p. 447 and
tests the standard UIPH regression assuming both stationary data and cointegrated data to ensure

15For example, comprehensive yield curve data for Germany is only available on Datasteam from 1996. Note
that the Bundesbank and Bank of England websites offer zero-coupon yield curve data obtained using curve-fitting
methods applied to market-quoted yield curve data, but not the market-quoted data itself.
16 20-year data are unavailable from January 1987 to September 1993, and so 30-year data (with a 30-year maturity)

are used during this period for the estimation of the ANS model.
17 30-year data are available from January 1991, and 25-year data are available before then.
18The empirical evidence is based on changing relationships between output growth and inflation. See, for example,

Estrella, Rodrigues and Schich (2003), Jardet (2004), and Krippner (2005), and the contextual discussions contained
therein.
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that the results are not sensitive to the persistence of the data over the sample period.19 The
UIPH regression allowing for cointegrated data uses the method of Stock and Watson (1993),
which essentially results in the estimated equations being augmented with the leads and lags of
changes in the interest rate differential.20 For example, equation 3 becomes:

∆et,m = am + bm ·m
¡
RUSt,m −RCAt,m

¢
+

mX
τ=−m

∆
£
m
¡
RUSt−τ,m −RCAt−τ,m

¢¤
+ v∗t,m (18)

Unfortunately, this augmentation rapidly reduces the degrees of freedom as the horizon being tested
increases, and the implications are discussed in the following section in light of the empirical results.

Finally, note that all of the horizons tested are greater than the monthly frequency of the data,
and so the order of moving-average serial correlation induced in all of the equations to be estimated
will be the horizon in months less 1. Hence, the Newey and West (1987) method with a window
of the horizon in months less 1 is used to correct the standard errors of the regressions for the
expected autocorrelation (and will at the same time correct for any heteroskedasticity that is a
typical feature of exchange rate data).21

4 Results and discussion

The upper section of table 3 contains the results from estimating equation 11, for which data
is available for all maturities. Assuming stationary data, the estimates of bm are negative and
significantly different from 1 for horizons up to two years, and are positive and insignificantly
different from 1 for horizons from three to five years. This pattern by horizon is consistent with the
results in the existing literature, as referenced in section 1. The estimates of am are insignificantly
different from zero for all horizons. This result is common to all of the subsequent estimations in
this article, and so is not discussed again.22

[ Table 3 here ]
The lower section of table 3 contains the results from estimating equation 11 assuming coin-

tegrated data. The results for the 3 and 6-month horizons confirm the results for the stationary
versions of the regressions; i.e the estimates of bm are negative and significantly different from 1.
The remaining results confirm the pattern of results by maturity assuming stationary data, except
the estimates of bm become positive from the 2-year horizon onward (albeit the r-squared statis-
tics show increasing evidence of overfitting, as the degrees of freedom drop rapidly with increasing
horizon).

The remainder of this article focusses on the UIPH tests for the 3-month, 6-month, and 1-year
horizons, given those horizons unambiguously reproduce the typical puzzling result of negative
estimates of bm regardless of the estimation method. Hence, tables 4, 6, and 8 respectively contain
the complete set of results for the series of UIPH tests on the 3-month, 6-month, and 1-year
horizons assuming stationary data, and tables 5, 7, and 9 contain the parallel estimations assuming
cointegrated data.

[ Tables 4, 5, 6, 7, 8, and 9 here ]

19This article does not consider mixed integration, i.e where exchange rate changes are I(0) and the interest rate
differential data is highly persistent or indistinguishable from I(1). While Maynard and Phillips (1998) shows that
mixed integration does have the the potential to distort critical values in finite samples, Liu and Maynard (2005)
finds in practice that the effect is relatively modest compared to the standard FRUH regression (and the FRUH is
still rejected).
20Following Hamilton (1994) pp. 608-613, the window width for the Stock and Watson (1993) method is determined

by the correlation between residuals vt,m in the original regression and leads and lags in the changes in the right-hand
side data. Because changes in the exchange rate data are lagged m years, the expected window of correlation is m (a
result that was also confirmed empirically), and so the appropriate symmetric window width is 2m.
21See, for example, Baillie and Bollerslev (1989) and Huisman, Koedijk, Kool and Palm (2002).
22This result probably arises from the use of government-risk interest rates in the analysis. This means that

the interest rate differentials should not reflect any differences in default-risk, which would be a factor when non-
government interest rates are used.
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Before discussing the component results, it is worthwhile highlighting some aspects of the 3- and
6-month UIPH regressions using the various estimates of interest rate data. Firstly, the estimates
of bm are immaterially different whether market-quoted or ANS zero-coupon interest rates are
used. Similarly, whenever the yield residuals are included as a separate explanatory variable, the
estimated coefficients zm are statistically insignificant. This suggests that, even if market-quoted
zero-coupon data were available for horizons from one year and beyond for the UIPH estimations
in table 3, is unlikely that the empirical results would be materially different from the results based
on the ANS interest rate data. Secondly, note that the results using the RNVA interest rates are
immaterially different from the results based on market-quoted or ANS zero-coupon interest rates.
Indeed, for any given maturity m, the function σ1θ1m

2 −P3
n=1 σ

2
n · un(m) is time invariant, and so

the adjustment of the data to RNVA interest rates only affects the estimate of am.23

The UIPH estimations using the individual components for the RNVA interest rates shows that
the coefficients wm for the Level component of interest rates are positive and insignificantly different
from 1, and the coefficients ym for the Slope plus Bow component of interest rates are negative and
significantly different from 1. These results suggest that the negative estimates of bm are due to
the influence of the Slope plus Bow components of interest rates (i.e the rationally-based cyclical
component of interest rates when the ANS model is related back to a generic general-equilibrium
economy).

The remaining tests of the UIPH use the Level and non-Level components of interest rates
independently. Using just the Level component and omitting the non-Level components from the
UIPH estimation effectively filters out the cyclical components of the original interest rates before
applying the UIPH regression. Similarly, using just the non-Level components and omitting the
Level components effectively filters out the steady-state or fundamental components of the original
interest rates before applying the UIPH regression.

Once again, the estimated parameters wm are all positive and insignificantly different from 1.
In other words, the UIPH is not rejected when the cyclical component of interest rates is excluded
from the UIPH regression. Conversely, the estimated parameters xm are once again all negative and
significantly different from 1. In other words, the rationally-based cyclical components of interest
rates again appear to be responsible for the negative coefficients obtained in the UIPH regressions.

5 Conclusion

This article applies the ANS model of the yield curve from Krippner (2006) to investigate the
UIPH. After decomposing the interest rate data used in the UIPH regressions into components that
reflect rationally-based expectations of the cyclical and fundamental components of the underlying
economy, it is found that the UIPH is not rejected based on the fundamental components of interest
rates, but is soundly rejected based on the cyclical components. These results provide empirical
support for suggestions from the theoretical models of McCullum (1994), Lim and Ogaki (2003)
and Meredith and Chinn (2004) that rationally-based interest rate and exchange rate dynamics
associated with cyclical interlinkages between the economy and financial markets may contribute
materially to the UIPH puzzle.

23As an aside, the immaterial differences in the estimates of am after the adjustment to RNVA interest rates
confirms the result in Wu (2005) that time-varying interest rate risk alone cannot plausibly explain the deviation of
the data from UIPH. More specifically, an inspection of figure 8 shows that a time-varying term premium would at
times have to account for persistent prediction errors of ±2% in the 3-month horizon, and ±5% in the 1-year horizon.
Noting that σ1θ1

2
= 0.0094% for Canada and 0.0060% for the US, and assuming volatility σ1 does not vary by several

orders magnitude across time (the data in figures 5 to 7 does not suggest otherwise), then the market price of risk θ1
would have to vary by a minimum of around 1000 times around its long-term average (i.e 4%÷ 0.0094%÷ 4 = 1705
for the 3-month horizon, and 10%÷ 0.0094% = 1066 for the 1-year horizon).
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A Generalising the economic model underlying the ANS/VAO
model

This appendix proceeds in three parts to formally establish the basis for applying the ANS model
to the yield curves of two economies to decompose the interest rates for those economies into their
fundamental and cyclical components for the UIPH tests. As background to the first two parts, the
economic foundation proposed in Krippner (2005) for the ANS model of the yield curve is based
on an explicit comparison to the yield curve derived from an augmented version of the Berardi
and Esposito (1999) (hereafter BE) model of the economy. The BE model and the augmented BE
(hereafter ABE) model developed in Krippner (2005) both assume for mathematical and exposi-
tional convenience that all factors and inflation rates in the economy are independent; i.e that the
correlations between the stochastic components are zero, and that the mean reversions for each
real factor and inflation rate in the economy have no interdependencies. Such a structure does not
explicitly allow for arbitrary dynamic inter-relationships that may exist within the economy (such
as Phillips curve relationships, monetary policy reaction functions, etc.), and so it cannot be taken
as given that an economy with such inter-relationships will still compare directly to the ANS model
of the yield curve.

Hence, section A.1 firstly establishes that a completely general version of the BE model allowing
for correlated stochastic components and interdependencies between mean-reversions still produces
a yield curve with the ANS functional form. Similarly, section A.2 establishes that a completely
general version of the ABE model (which is the BE model with an allowance for the steady-state
variables to follow low-variance Brownian motions) also produces a yield curve with the ANS
functional form.

Finally, section A.3 provides extends the principles from section A.2 to the key results that
underlie the analysis in this article; i.e a model with two completely general ABE economies and a
bilateral exchange rate will produce yield curves of the ANS functional form for both economies.
Hence, applying the ANS model to the yield curve data of two economies enables the direct decom-
position of the interest rates for those economies into their fundamental and cyclical components
for the UIPH tests.

B The generalised BE economy

In its most general form, the BE economy may be expressed as the following stochastic vector
differential equation:

ds (t) = −κ [s (t)− θ] dt+ σdz (t) (19)

where s (t) are the state variables [s1 (t) , . . . , s2J (t)]
0; θ are the steady-state variables [θ1, . . . , θ2J ]0;

dz (t) are Wiener increments [dz1 (t) , . . . , dz2J (t)]
0; κ is the mean-reversion coefficient matrix κ1,1 · · · κ1,2J

...
. . .

...
κ2J,1 · · · κ2J,2J

; and σ is the standard deviation coefficient matrix
 σ1,1 · · · σ1,2J

...
. . .

...
σ2J,1 · · · σ2J,2J

.
The outer product of the stochastic terms is Ω = σdz (t) [dz (t)]0 σ0 = σIσ0 = σσ0. The matrix

Ω will in general be non-diagonal (which allows for relationships between innovations in the growth
rates of the factors of production and their rates of inflation), but it may be rotated into a diagonal
representation. That is, using the notation of Greene (1997) pp. 35-38 for characteristic vectors and
values (or eigenvectors and eigenvalues): Ω = CΛC0, where C = {c1, . . . , c2J} is a matrix of order

2J× 2J (i.e a 2J-row vector of 2J-column eigenvectors); and Λ =


λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λ2J

 is a 2J×
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2J diagonal matrix of eigenvalues. Pre-multiplying equation 19 by C0 then gives an orthogonal
basis, i.e:

C0ds (t) = −C0κ [s (t)− θ] dt+C0σdz (t) (20)

which is orthogonal given that C0σ1dz1 (t) [dz1 (t)]0σ01C = C
0CΛC0C = IΛI = Λ.

Applying the expectations operator as at time t to equation 20 gives:

Et

£
C0ds (t+m)

¤
= −C0κ {Et [s (t+m)]− θ} dt (21)

and noting that CC0 = I, the right-hand side of equation 21 may be re-expressed, giving:

Et

£
C0ds (t+m)

¤
= −C0κC©Et

£
C0s (t+m)

¤
+C0θ

ª
dt (22)

With the exception of an extraordinary coincidence, the matrix −C0κC will not be diagonal,
and so the solution will not be as straightforward as solving the scalar differential equation for
separate elements of the vector C0ds (t+m). However, Rainville and Bedient (1981) pp. 247-
273 shows how to obtain a solution in the general case of dX = AX +B using eigenvectors and
eigenvalues. Hence, substitute PQP0 = −C0κC, where P = {p1, . . . ,p2J} is a matrix of order 2J×

2J (i.e a 2J-row vector of 2J-column eigenvectors), and Q =


q1 0 · · · 0

0 q2
. . .

...
...

. . . . . . 0
0 · · · 0 q2J

 is a 2J× 2J

diagonal matrix of eigenvalues. Following Rainville and Bedient (1981), the solution is then:

Et

£
C0s (t+m)

¤
= C0θ +

2JX
j=1

wjpj exp (qjm) (23)

where wj are constants. The constants wj may be identified using the boundary condition atm = 0,
i.e:

C0s (t) = C0θ +
2JX
j=1

wjpj

= C0θ +Pw (24)

where w = [w1, . . . , w2J ]
0. Hence, w = P0C0 [s (t)− θ], given the property of eigenvectors that

P−1 = P0.
Under the very mild requirement that the eigenvalues qj are real and negative (as is effectively

assumed in BE), this establishes the key result that the functional form for each state variable
will be a time-invariant constant plus a summation of exponential decay terms.24 Hence, the
expected path of the short rate will be the summation of a time-invariant constant and time-
varying exponential decay terms. Following Krippner (2006), the expected path of the short rate
may therefore be approximated to arbitrary precision by a time-invariant constant and time-varying
exponential-polynomial terms. Also following Krippner (2005), the application of the Heath, Jarrow
and Morton (1992) framework to the expected path of the short rate with exponential-polynomial
terms will lead to forward rate and interest rate curves of the ANS form.
24With reference to the economic interpretation of chapter 3, the requirement of real and negative eigenvalues

implies that nominal GDP growth will be stationary and without regular cycles (i.e without the damped sinusoidal
cycles that would result from the presence of any complex eigenvalues). These properties are readily evident from
the casual observation of realised historical data.
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C The generalised ABE economy

In its most general form, the ABE economy may be expressed as the following stochastic vector
differential equation:·

ds (t)
dθ (t)

¸
= −

·
κ1 κ0
0 0

¸ ·
s (t)− θ (t)

θ (t)

¸
dt+

·
σ11 σ10
σ01 σ00

¸ ·
dz1 (t)
dz0 (t)

¸
(25)

where s (t) = [s1 (t) , . . . , s2J (t)]
0 are the state variables; θ (t) = [θ1 (t) , . . . , θ2J (t)]0 are the steady-

state variables; dzx (t) = [dzx,1 (t) , . . . , dzx,2J (t)]
0 for x = 1 and 0 are Wiener increments; κx = κx,1,1 · · · κx,1,2J

...
. . .

...
κx,2J,1 · · · κx,2J,2J

 for x = 1 and 0 are the mean-reversion sub-matrices; and σxy =

 σxy,1,1 · · · σxy,1,2J
...

. . .
...

σxy,2J,1 · · · σxy,2J,2J

 for the combinations of xy = 11, 10, 01, and 00 are the standard

deviation coefficient sub-matrices. Note that the 0 sub-matrix entries in the deterministic coef-
ficient matrix ensure that the steady-state variables evolve as unit root processes, as assumed in
Krippner (2006). Other restrictions may also be introduced for compatibility with economic theory
(e.g σ01 = 0, so that short-run dynamics cannot influence long-run dynamics), but that does alter
the mathematical nature of the exposition given here.

Following the approach used for solving the generalised BE model in section B.1, the outer
product of the stochastic terms is then:

Ω =

·
σ11 σ10
σ01 σ00

¸ ·
σ11 σ10
σ01 σ00

¸0
(26)

As with the generalised BE model, the matrix Ω will in general be non-diagonal, but it may be
rotated into a diagonal representation. That is, Ω = CΛC0, where C = {c1, . . . , c4J} is a matrix of
order 4J× 4J (i.e a 4J-row vector of 4J-column eigenvectors), and Λ is a 4J× 4J diagonal matrix
of eigenvalues. Pre-multiplying equation 25 by C0 then gives an orthogonal basis, i.e:

C0
·
ds (t)
dθ (t)

¸
= −C0

·
κ1 κ0
0 0

¸ ·
s (t)− θ (t)

θ (t)

¸
dt

+C0
·
σ11 σ10
σ01 σ00

¸ ·
dz1 (t)
dz0 (t)

¸
(27)

Applying the expectations operator as at time t to equation 27 gives:

Et

½
C0
·
ds (t+m)
dθ (t+m)

¸¾
= −C0

·
κ1 κ0
0 0

¸ ·
Et [s (t+m)]− θ (t)

θ (t)

¸
(28)

and equation 28 may be re-expressed as:

Et

½
C0
·
ds (t+m)
dθ (t+m)

¸¾
= −C0

·
κ1 κ0
0 0

¸
C

·
Et [C

0s (t+m)]−C0θ (t)
C0θ (t)

¸
(29)

As with the generalised BE model, the matrix −C0
·
κ1 κ0
0 0

¸
C will in general not be diagonal,

but the solution is obtained using the eigenvector and eigenvalue approach already outlined in

section B.1. Hence, substitute PQP0 = −C0
·
κ1 κ0
0 0

¸
C, where P = {p1, . . . ,p4J} is a matrix of
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order 4J× 4J (i.e a 4J-row vector of 4J-column eigenvectors), and Q =


q1 0 · · · 0

0 q2
. . .

...
...

. . . . . . 0
0 · · · 0 q4J

 is
a 4J× 4J diagonal matrix of eigenvalues. Note that many of the eigenvalues qj will be zero, given
the unit root processes assumed for the steady-state variables. Following Rainville and Bedient
(1981), the solution is then:

Et

½
C0
·
s (t+m)
θ (t+m)

¸¾
=

4JX
j=1

wjpj exp (qjm) (30)

where wj are constants, and when qj = 0, exp (qjm) = exp (0 ·m) = 1. The constants wj may be
identified using the boundary condition at m = 0, i.e:

C0
·
s (t)
θ (t)

¸
=

4JX
j=1

wjpj

= Pw (31)

where w = [w1, . . . , w4J ]
0. Hence, w = P0C0

·
s (t)
θ (t)

¸
, and so the functional form for each state

variable will be a summation of time-varying constants (which result from the zero eigenvalues
qj) plus a summation of time-varying exponential decay terms (which result from the terms with
non-zero eigenvalues qj , again under the mild assumption that the latter are real and negative).
Hence, the expected path of the short rate will be the summation of time-varying constants and
time-varying exponential decay terms, and following Krippner (2006), this may be approximated
to arbitrary precision by a time-varying constant and time-varying exponential-polynomial terms.
Again following Krippner (2005), the application of the Heath et al. (1992) framework to the
expected path of the short rate with exponential-polynomial terms will lead to forward rate and
interest rate curves of the ANS form.

D Two generalised ABE economies with an exchange rate

In its most general form, two ABE economies with an bilateral exchange rate may be expressed in
the same form as equation 25, i.e:

ds1 (t)
dθ1 (t)
ds2 (t)
dθ2 (t)
de (t)
dθe (t)

 = −κ1,2,e


s1 (t)− θ1 (t)
θ1 (t)

s2 (t)− θ2 (t)
θ2 (t)
e (t)
θe (t)

+ σ1,2,edz1,2,e (t) (32)

where s1 (t) and s2 (t) are respectively the vectors of the state variables for economy 1 and 2; θ1 (t)
and θ2 (t) are respectively the vectors of the steady-state variables for economy 1 and 2; e (t) and
θe (t) are respectively the state variable and steady-state variable for the bilateral exchange rate;
dz1,2,e (t) is the Wiener variable vector for the two economies and the exchange rate; κ1,2,e is the
mean-reversion coefficient matrix for the two economies and the exchange rate; and σ1,2,e is the
standard deviation coefficient matrix for the two economies and the exchange rate.

The terms κ1,2,e and σ1,2,e are, respectively, generalisations of the mean-reversion and standard
deviation coefficient matrices in the generalised ABE model of section B.2. These will allow for dy-
namic dependencies between the state variables and steady-state variables of the two economies and
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the exchange rate. Suitable zero restrictions will be required to ensure that the steady-state vari-
ables evolve as unit root processes, and other restrictions may also be introduced for compatibility
with economic theory (e.g so short-run dynamics cannot influence long-run dynamics).

The orthogonalisation of the state variables and the steady-state variables will then follow the
processes already outlined for the generalised ABE model in section B.2. The solution of the
expected paths of the short rate in both economies will follow from that orthogonal representation,
as for the generalised ABE model in section B.2. The result will again be a functional form for each
state variable that is a summation of time-varying constants (that result from the zero eigenvalues
qj associated with the unit root processes for the steady-state variables) plus a summation of time-
varying exponential decay terms (that result from the terms with non-zero eigenvalues qj , again
under the mild assumption that the latter are real and negative). Hence, the expected path of
the short rate in each economy will be the summation of time-varying constants and time-varying
exponential decay terms. Following Krippner (2006), the expected path of the short rate in each
economy may therefore be approximated to arbitrary precision by a time-varying constant and
time-varying exponential-polynomial terms; i.e an ANS model of the yield curve for each economy.
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Figure 1: The Level, Slope, and Bow modes, i.e s1(m), s2(m), and s3(m) respectively, for the ANS
model of the yield curve. φ = 0.5 for this illustration.
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Figure 2: The US yield curve for February 2004. The diamond points are the market-quoted yields-
to-maturity of the different securities, the triangle points are the estimated yield residuals for the
non-coupon-paying securities, and the line is the continuously-compounding zero-coupon interest
rate curve for the estimated ANS model with βUS1 (Feb-2004) = 6.47%, βUS2 (Feb-2004) = 7.98%,
βUS3 (Feb-2004) = −2.46%.
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Figure 3: The RNVA ANS zero-coupon interest rate curve and its components for the Febru-
ary 2004 US yield curve observation. The RNVA ANS zero-coupon interest rate curve isP3

n=1 β
US
n (Feb-2004) · sUSn (m), the ANS Level component is βUS1 (Feb-2004) · sUS1 (m), and the ANS

Slope plus Bow component is βUS2 (Feb-2004) · sUS2 (m)+ βUS3 (Feb-2004) · sUS3 (m).

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10
Maturity in years (m )

Y
ie

ld
 in

 p
er

ce
nt

US - CA ANS 
Level component

US - CA ANS Slope 
plus Bow component

US - CA RNVA ANS zero-
coupon interest rate curve

2-year interest rate differential 
and components

Figure 4: The RNVA ANS zero-coupon interest rate differential and its components for the Febru-
ary 2004 US and Canadian yield curves. The RNVA ANS zero-coupon interest rate differen-
tial is

P3
n=1 β

US
n (Feb-2004) · sUSn (m) −P3

n=1 β
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n (Feb-2004) · sCAn (m), the Level component is

βUS1 (Feb-2004)−βCA1 (Feb-2004), and the non-Level component is
P3

n=2 β
US
n (Feb-2004) · sUSn (m)−P3

n=2 β
CA
n (Feb-2004) · sCAn (m).
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Figure 5: UIPH data for the 1-year horizon using the ANS model 1-year interest rate. The series
are the lagged annual change in the CAD/USD exchange rate (i.e ∆et,1) and the US less Canadian
interest rate differential from the RNVA ANS model for the 1-year maturity (i.e m = 1).
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Figure 6: UIPH data for the 1-year horizon using the Level component of the 1-year interest rate.
The series are the lagged annual change in the CAD/USD exchange rate (i.e ∆et,1) and the US
less Canadian interest rate differential for the Level component of the ANS model for the 1-year
maturity (i.e m = 1).
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Figure 7: UIPH data for the 1-year horizon using the Slope plus Bow component of the 1-year
interest rate. The series are the lagged annual change in the CAD/USD exchange rate (i.e ∆et,1)
and the US less Canadian interest rate differential for the Slope plus Bow component of the ANS
model for the 1-year maturity (i.e m = 1). The latter has been inverted to illustrate the inverse
relationship with ∆et,1.
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Figure 8: UIPH prediction errors. The series are the lagged changes in the CAD/USD exchange
rate (i.e ∆et,m) less the interest rate differential for the 3-month, 6-month, and 1-year horizons.
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Unit root or 
stationarity 

test

Change in 
LN 

USD/CAD

ANS interest 
rate 

differential

RNVA ANS 
interest rate 
differential

Level 
component of 
ANS interest 

rate 
differential

Non-Level 
component of 
ANS interest 

rate 
differential

PP fixed -2.81 * -1.78 -1.78 -2.85 * -2.26 
window 12 12 12 12 12
PP auto -2.82 * -1.78 -1.78 -2.81 * -2.26 
window 11 12 12 11 12

ADF fixed -1.87 -1.86 -1.86 -1.86 -2.03 
lags 12 12 12 12 12

ADF auto -1.87 -1.52 -1.52 -2.60 * -2.41 
lags 12 7 7 1 0

KPSS fixed 0.28 0.95 *** 0.95 *** 0.53 ** 0.66 **
window 12 12 12 12 12

KPSS auto 0.30 0.95 *** 0.95 *** 0.57 ** 0.66 **
window 11 12 12 11 12

Table 1: Unit toot and stationarity tests on the data used to estimate the 1-
year horizon UIPH. PP is Phillips-Perron, ADF is augmented Dickey-Fuller,
KPSS is Kwiatkowski-Phillips-Schmidt-Shin, and the window width/number
of lags is given below each statistic. *, **, and *** respectively denote a 10,
5, and 1 percent level of significance.

Cointegra-
tion tests 

versus 
USD/CAD

Change in 
LN 

USD/CAD

ANS interest 
rate 

differential

RNVA ANS 
interest rate 
differential

Level 
component of 
ANS interest 

rate 
differential

Non-Level 
component of 
ANS interest 

rate 
differential

PP fixed n/a -2.98 ** -2.98 ** -3.09 ** -2.91 **
window n/a 12 12 12 12

PP selected n/a -2.97 ** -2.97 ** -3.10 ** -2.91 **
window n/a 11 11 11 11

ADF fixed n/a -2.39 -2.39 -2.38 -2.32 
lags n/a 12 12 12 12

ADF selected n/a -2.39 -2.39 -2.38 -2.32 
lags n/a 12 12 12 12

Table 2: Cointegration tests on the 1-year horizon UIPH data. These are
unit root tests on the interest rate differential measures less the change in
the exchange rate data for the 1-year horizon UIPH. PP is Phillips-Perron,
ADF is augmented Dickey-Fuller, and the window width/number of lags is
given below each statistic. ** denotes a 5 percent level of significance.
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3 months 6 months 1 year 2 years 3 years 4 years 5 years
a m -0.51% -0.42% -0.50% -0.17% 0.47% 0.44% 0.38%
s.e 1.13% 1.05% 1.10% 1.20% 1.43% 1.36% 1.03%

P(0) 0.652 0.687 0.652 0.889 0.743 0.746 0.712
b m -0.85 -0.81 -0.89 -0.63 0.25 0.71 0.99
s.e 0.39 0.40 0.58 0.87 0.99 0.96 0.70

P(0) 0.028 0.045 0.126 0.472 0.804 0.462 0.157
P(1) 0.000 0.000 0.001 0.063 0.446 0.763 0.992
R2 0.021 0.031 0.050 0.026 0.004 0.043 0.102
DF 247 244 238 226 214 202 190

a m 0.06% 0.06% 0.36% 0.83% 1.92% 3.62% 2.53%
s.e 1.13% 1.20% 1.32% 1.80% 0.95% 0.19% 1.96%

P(0) 0.960 0.961 0.787 0.647 0.045 0.000 0.199
b m -0.45 -0.49 -0.24 0.73 3.49 5.84 4.92
s.e 0.42 0.51 0.76 1.35 0.87 0.29 1.63

P(0) 0.280 0.333 0.752 0.591 0.000 0.000 0.003
P(1) 0.001 0.004 0.103 0.840 0.005 0.000 0.017
R2 0.099 0.079 0.157 0.391 0.716 0.951 0.996
DF 236 224 200 152 104 56 8

Estimates assuming stationary data

Estimates allowing for cointegrated data

Table 3: UIPH test results using ANS model interest rates. P(0) and P(1)
are p-values for the respective hypotheses that the parameters equal 0 or 1.
The UIPH (i.e bm = 1) is rejected at the 5 percent level of significance for
short horizons, but is not rejected for longer horizons. Note that the esti-
mates allowing for cointegrated data show increasing evidence of overfitting
beyond the 1-year horizon.
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Actual ANS RNVA L+SB+R L+SBR L SB+R SBR
a m -0.53% -0.51% -0.53% 0.73% 0.81% 1.05% 0.71% 0.81%
s.e 1.14% 1.13% 1.14% 2.34% 2.26% 2.29% 1.03% 0.94%

P(0) 0.639 0.652 0.639 0.755 0.719 0.648 0.491 0.391
b m -0.85 -0.85 -0.85
s.e 0.37 0.39 0.37

P(0) 0.022 0.028 0.022
P(1) 0.000 0.000 0.000
wm 0.01 0.00 0.23
s.e 1.07 1.07 1.09

P(0) 0.993 0.999 0.834
P(1) 0.356 0.349 0.479
x m -0.97 -0.97
s.e 0.40 0.40

P(0) 0.016 0.017
P(1) 0.000 0.000
y m -0.85 -0.85
s.e 0.49 0.50

P(0) 0.087 0.090
P(1) 0.000 0.000
z m -3.47 -3.47
s.e 5.44 5.43

P(0) 0.524 0.523
P(1) 0.412 0.411
R2 0.023 0.021 0.023 0.028 0.027 0.000 0.028 0.027
DF 247 247 247 245 246 247 246 247

Table 4: UIPH test results for the 3-month horizon assuming stationary
data. P(0) and P(1) are p-values for the respective hypotheses that the
parameters equal 0 or 1. L is the ANS Level component, SB is the ANS
Slope plus Bow component, R is the yield residual component, and SBR is
the Slope plus Bow plus yield residual component. The UIPH (i.e bm = 1)
is strongly rejected, which is attributable to the Slope plus Bow component
of interest rates (i.e ym << 1).
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Actual ANS RNVA L+SB+R L+SBR L SB+R SBR
a m 0.00% 0.06% 0.00% 2.80% 2.97% 2.21% 0.48% 0.77%
s.e 1.14% 1.13% 1.14% 2.48% 2.41% 2.41% 1.25% 0.97%

P(0) 0.997 0.960 0.997 0.261 0.220 0.360 0.700 0.424
b m -0.47 -0.45 -0.47
s.e 0.39 0.42 0.39

P(0) 0.230 0.280 0.230
P(1) 0.000 0.001 0.000
wm 1.49 1.38 0.93
s.e 1.18 1.19 1.17

P(0) 0.210 0.248 0.429
P(1) 0.680 0.749 0.953
x m -0.83 -0.63
s.e 0.44 0.40

P(0) 0.056 0.120
P(1) 0.000 0.000
y m -0.51 -0.29
s.e 0.68 0.68

P(0) 0.459 0.672
P(1) 0.028 0.059
z m -8.76 -7.44
s.e 9.31 9.22

P(0) 0.348 0.420
P(1) 0.295 0.361
R2 0.101 0.099 0.101 0.142 0.124 0.015 0.094 0.081
DF 236 236 236 220 228 236 228 236

Table 5: UIPH test results for the 3-month horizon assuming cointegrated
data. The notation and results are as for table 4.
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Actual ANS RNVA L+SB+R L+SBR L SB+R SBR
a m -0.48% -0.42% -0.48% 1.64% 1.10% 1.48% 1.36% 0.65%
s.e 1.15% 1.05% 1.15% 2.59% 2.22% 2.26% 1.82% 0.95%

P(0) 0.679 0.687 0.678 0.528 0.621 0.513 0.457 0.491
b m -0.72 -0.81 -0.72
s.e 0.37 0.40 0.37

P(0) 0.049 0.045 0.049
P(1) 0.000 0.000 0.000
wm 0.19 0.28 0.52
s.e 0.98 1.02 1.02

P(0) 0.847 0.781 0.614
P(1) 0.409 0.483 0.637
x m -0.86 -0.88
s.e 0.37 0.36

P(0) 0.021 0.017
P(1) 0.000 0.000
y m -1.09 -1.10
s.e 0.56 0.56

P(0) 0.054 0.050
P(1) 0.000 0.000
z m 1.81 1.86
s.e 4.06 4.08

P(0) 0.655 0.649
P(1) 0.841 0.834
R2 0.028 0.031 0.028 0.046 0.038 0.002 0.046 0.038
DF 244 244 244 242 243 244 243 244

Table 6: UIPH test results for the 6-month horizon assuming stationary
data. The notation and results are as for table 4.

28



Actual ANS RNVA L+SB+R L+SBR L SB+R SBR
a m -0.03% 0.06% -0.03% 4.00% 4.08% 3.11% 1.21% 0.72%
s.e 1.30% 1.20% 1.30% 2.90% 2.75% 2.72% 2.50% 1.01%

P(0) 0.981 0.961 0.981 0.170 0.140 0.254 0.630 0.477
b m -0.48 -0.49 -0.48
s.e 0.22 0.16 0.22

P(0) 0.032 0.003 0.032
P(1) 0.000 0.000 0.000
wm 2.25 2.14 1.50
s.e 1.51 1.40 1.31

P(0) 0.138 0.127 0.251
P(1) 0.410 0.415 0.700
x m -0.96 -0.84
s.e 0.56 0.42

P(0) 0.088 0.048
P(1) 0.001 0.000
y m -0.97 -1.10
s.e 0.86 0.82

P(0) 0.261 0.182
P(1) 0.023 0.011
z m -2.60 0.35
s.e 6.84 6.36

P(0) 0.704 0.956
P(1) 0.599 0.919
R2 0.070 0.079 0.070 0.164 0.130 0.036 0.108 0.074
DF 224 224 224 196 210 224 210 224

Table 7: UIPH test results for the 6-month horizon assuming cointegrated
data. The notation and results are as for table 4.
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ANS RNVA L+SB L SB
a m -0.50% -0.51% 1.73% 1.98% 0.99%
s.e 1.10% 1.10% 2.17% 2.35% 1.18%

P(0) 0.652 0.647 0.427 0.401 0.403
b m -0.89 -0.89
s.e 0.58 0.58

P(0) 0.126 0.126
P(1) 0.001 0.001
wm 0.48 0.88
s.e 1.02 1.02

P(0) 0.637 0.389
P(1) 0.613 0.905
x m -1.15 -1.19
s.e 0.58 0.56

P(0) 0.049 0.033
P(1) 0.000 0.000
R2 0.050 0.050 0.087 0.012 0.084
DF 238 238 237 238 238

Table 8: UIPH test results for the 1—year horizon assuming stationary data.
P(0) and P(1) respectively represent tests that the parameters equals 0 or 1.
L is the ANS Level component, SB is the ANS Slope plus Bow component.
The UIPH (i.e bm = 1) is strongly rejected, which is attributable to the
Slope plus Bow component of interest rates (i.e xm << 1).

ANS RNVA L+SB L SB
a m 0.36% 0.35% 5.71% 5.28% 1.04%
s.e 1.32% 1.32% 3.76% 3.50% 1.35%

P(0) 0.787 0.789 0.130 0.133 0.440
b m -0.24 -0.24
s.e 0.76 0.76

P(0) 0.752 0.752
P(1) 0.103 0.103
wm 3.07 2.89
s.e 2.01 1.78

P(0) 0.128 0.105
P(1) 0.305 0.289
x m -0.73 -1.00
s.e 1.02 0.74

P(0) 0.475 0.175
P(1) 0.091 0.007
R2 0.157 0.157 0.276 0.187 0.128
DF 200 200 174 200 200

Table 9: UIPH test results for the 1—year horizon assuming cointegrated
data. The notation and results are as for table 8.
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