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Abstract
We review the basic principles for the evaluationdekign efficiency in discrete
choice modelling with a focus on efficiency of WT8timates from the multinomial
logit model. The discussion is developed under thalistic assumption that
researchers can plausibly define a prior on tHgyutbefficients. Some new measures
of design performance in applied studies are pregh@sd their rationale discussed.
An empirical example based on the generation andpedson of fifteen separate
designs from a common set of assumptions illugdrtie relevant considerations to
the context of non-market valuation, with particidaphasis placed on C-efficiency.
Conclusions are drawn for the practice of reportmgon-market valuation and for

future work on design research.
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1. Introduction

Stated choice modelling has now an established mleonmarket valuation.
Practitioners are engaged in testing the methoddafiding the boundaries of its use
in public decision making and cost benefit analybisthis respect the method has
taken up a research agenda which is quite distenétom other fields of applications,
such as in transport, marketing, food choice aradthh@esearch. One of the areas of
distinctiveness is associated with the methodolofygxperimental design for the
specific purpose of deriving nonmarket values.

A survey of existing nonmarket valuation studiesidates that there is a prevailing
format of stated choice surveys in nonmarket vauaatTypically, this involves
asking respondents to indicate their preferredraiteve from those offered within a
given choice set. Alternatives in the choice setadien outcomes of policies that can
vary in their effects of relevance to the respomndEffects of policies are described
by a selected number of attributes, each of wharhtake a qualitative or numerical
level. Rather than review a single choice set, nedpots are typically asked to
evaluate several, thus increasing the number adreasons per individual surveyed.
Experimental design is used to allocate levelsttiabates of alternatives in choice
sets. As such, experimental designs lie at the odrall stated choice studies.
Conceptually, experimental designs may be vieweth@systematic arrangement in
matrices of the values that researchers use taibedbe attributes representing the
alternative policy options of thenypothetical choice situations. Because the
combinations of attribute and attribute levels banrhuge even with relatively simple
problems, some theory must be used to drive thexeh of these levels and their
arrangements in choice sets in order to achievereéeired information within
practical sample sizes.

Via experimental design theory, the analyst is d@bleletermine the values to be
assigned to attributes in each alternative situaiigitin the choice sets to be used in
the survey. The assignment of these values occum®me systematic (i.e., non-

random) manner so as to achieve the intended sesibe survey in an efficient, i.e.,

a least cost manner. The theory makes use of \sxdateria to evaluate the outcomes
of these assignments on the basis of the assurapiivoked by the analyst as

incorporated by a given model specification. THea®n of the correct set of criteria

will drive the analyst to an adequate choice forghgose at hand and conditional on
the chosen specification and other assumptions ioptiee researcher.

Experimental design techniques are of general aalex in survey research. However,
the specific focus of nonmarket valuation on thewd¢ion of implicit prices from
discrete choices has some important and distineth@ications in the practice of
experimental design which are still inadequatelgiradsed, as discussed in depth by
Ferrini and Scarpa (2007). The present paper istémctontribute to developing an
understanding of these implications within the ‘warkse’ of discrete choice
analysis: the conditional logit model predicatedrandom utility theory. Extensions
to other specifications of the logit family are ceptually immediate, although
technically challenging, and definitely beyond soepe of this paper.



To do so we selectively draw from the wide and rapetkpanding literature in
experimental design for logit models and we propamsenfrequently used criterion
based on the specific needs of nonmarket valuakon.CM surveys developed to
estimate monetary values desirable criteria shoelblve around efficiency of
willingness to pay (WTP) estimates, which are funsi of the utility parameter
estimates of logit models predicated on randomitwtitheory. While criteria
measuring predictive performance of probabilitieslity balance across alternatives
and efficiency of the utility estimates are muchrendrequently used in design
evaluation, the way such criteria are related tadcieficy of and sample size
requirements for WTP estimates is unclear. Inplajser we set up the building blocks
for investigating such a relationship and provideaked out example exploring the
relationship between parameter efficiency and WTiiency. We set-up our
example in a setting that is most common in nonetavikluation applications, the
one with repeated choices from two hypotheticaratitive and the status-quo or no-
buy option.

The rest of the paper is organised as follows. &e@iprovides a discussion of the
relationship between discrete choice models, randtiity theory and experimental
design. Section 3 discusses various efficiencegaitthat have been employed in the
literature before Section 4 introduces a new cetbased on WTP efficiency. Section
5 provides a brief discussion on what should beonteg in terms of statistical
measures after which algorithms for generatingcieffit designs are introduced.
Section 7 provides a treatise on the issue ofrsga@ind designs which has often been
ignored within the literature. A case study in whicdhdifferent experimental designs
are generated using different design strategieseid presented, before general
conclusions are made.

2. Discrete choice models, random utility and expemental design

Qualitative choice is based on discrete outcomesesepted by the selection of
alternatives from a given consideration set. Wiatnf of evaluation (lexicographic,
elimination by aspect, economic or other attribidereening rules, etc.) is
predominant amongst respondents in driving suatteh, remains an elusive issue.
Much research is being conducted on methods totipag distinguish these
processes starting from observed behaviour. Reggdbf actual evaluation
processes, in applied research the most successtailligm to date has been random
utility theory (RUT), and we refer to this in whatllbws. Similarly, in terms of
statistical analysis of responses, the most sultdeggecification consistent with RUT
has been the conditional logit model (McFadden }19This model remains at the
core of most of the more sophisticated specificesticuch as nested and mixed logit
models. What is discussed and illustrated in prectiere can be easily extended,
although not so easily illustrated, to more sopdased RUT-based models.

The main point of departure of our study concefes lbgical consequences from
being able to assume the direction and sometimeethive magnitude of the values
of the taste intensity parameters in the utilitydtion. As soon as the researcher can
plausibly defend that some attributes of choice mayerally be expected to have a
given sign or relative size the efficiency of thes@n for a logit specification can
easily be shown to be improved from what would bectige in the absence of such
an assumption. In this respect our work cannot ®@mpared to similar research



carried out within the limited framework of probatjlibalanced designs, that are
predicated on researchers’ ignorance of the vabidaste intensities (Burgess and
Street 2005; Street and Burgess 2005; Street @08@lL, 2005). In our case then, we
take a completely opposite approach from the staaken by Lusk and Norwood
(2005), who state that:

“...In_ many cases researchers do not have strongsprio
regarding preferences. This article focuses on gdesi
strategies where the analyst has no prior infomnatbout
true utility.” (Lusk and Norwood, AJAE 2005(97(3): 7972

With this premise, the authors proceed to develaojseussion prevalently based on
the property of orthogonality, which is—as they rttselves note—much more
relevant for designs developed for linear multigggimodels than it is for highly non-
linear models such as those in the logit family.

As a matter of fact, we argue exactly the oppositeichvis that in the greatest
majority of nonmarket valuation studies researciedsedare able to predict at least
the sign of the price coefficient. In reality, howeyresearchers can normally do more
than this and express some beliefs on the rangaloés that are likely to be taken up
by other parameters in the utility function.

In terms of assumptions our research is therefoseenakin to research efforts by
Sandor and Wedel (2001, 2002, 2005), Bliemer anseR2005), Bliemer et al. (2005,
2007) Ferrini and Scarpa (2007) and Kessels ef2806). We also note that this
approach is more in keeping with previous literainreptimal design for non-market
valuation (Alberini 1995, Kanninen 1993a, b), andsefjuential improvement of
survey designs in non-market valuation (KanninerBb9%carpa et al. 2007).

We will show with examples that when adequately egped this a-priori information
is of great use and can lead to substantial effagiein the design. In doing so,
however, the analyst must be made aware of some t@dtdifficulties, some of
which are of specific interest to the current chaivadeling practice for the purpose
of non-market valuation, such as the effect ofsta¢us-quo alternative and that of the
choice of attribute coding on the evaluation ofeffeciency of the design.

We now move our attention to the definition of @#fieccy in the context of the logit
model commonly used to derive estimates of utitgefficients from observed
discrete choice.

3. Measuring design efficiency for taste intensite
In this section we examine the measures of dedfgeacy that are of interest when

the objective is to estimate the coefficients @ thdirect utility function, or the so
called taste intensities.



3.1 The basics

Consider a situation involving the choice betwgeh,2,...,) alternatives, each of
which are described by attributes. Assuming the choice process is modedet a
conditional logit specification with Gumbel error lca > 0, we get:

AB%;

PIY = )=——— A>0, (1)

z &%

which is the probability that alternatiyavill be selected in choice task

The specific values ofj are defined by the experimental design. An efficaesign
will minimize the variance-covariance estimator, qutdifferently—will maximize
the amount of information the design conveys tatifigthe estimates of the vectGr
The information matrix for the design under theditaonal logit assumption is given
by the matrix of second derivatives of the logdilkeod function, which can
compactly be written as:

Z;I;ﬂL —IZ:Z Of =3 =%)", Withfxz;uﬁjx’ (2)

1(B.%;)

which is a matrix of siz&x K.

One of the reasons of the popularity of the multimmogit model is that of having a
relatively simple mathematical formulation of boftle Jacobian (gradient or vector of
first derivatives) and Hessian (matrix of secondvdgives). Both objects however,
are functions of both the utility coefficienfsand the matrix of choice attributes
(i.e., the experimental design). So, an informatiasign is one that makes some
function of the size of(3,%;). In other words, takeg(l(B3,%;)) as a measure of
information, an informative design should make thisasure large. At this stage it is
useful to revise the relationship betweéBx;) and a common Maximum Likelihood
estimator of the asymptotic variance-covariance (AM@trix Z(3,x;) of a design.
The Maximum Likelihood estimator of the AVC matriarfa design to be used with
the conditional logit model is the negative inveaseéhe expected Fisher information
matrix (e.g., see Train 2003), where the lattelqisatto the second derivatives of the
log-likelihood function:

ave=3(8,x)=[ & (8. 9)]|" {-‘Zﬁ!ﬂ ©
where IrL is the log-likelihood of the design:
L=y 3y, InR(x.A), @

i=1 j=1

wherei choice tasks implied in the design, gritle alternatives.



In choosing an informative (efficient) design thame can choose to think in
equivalent terms of eithenaximizinginformation orminimizingvariance. A suitable

algorithm would search the arrangement of attritarid levels in a suitably coded
matrix x; such that an optimal solution is found accordmgdme stopping criteria.

3.2 Design efficiency measures

A key passage is the definition of the functig{), which is useful to define as a
single number, rather than a collection as in wvscadmd matrices. A convenient scalar
measure of the size of a matrix is its determinahich is a sum of terms each made-
up of products of systematically selected elemaritsthe matrix. A nonzero
determinant matrix implies the matrix has full rgimio collinearity and identification
of the f). So, the determinant of the information matrix éguivalently minimizing
that of the AVC) is a valid measure of efficiendyaocandidate design. However, the
determinant will be larger ds—the number of elements f—increases, so that one
must devise a measure that accounts for that toooffen used measure is the D-
error:

D error = det(Q B % ))l/k (5)

So, that a search over the arrangement of attrlbuéds inx; can be used to minimize
such scalar measure.

Rather than the determinant, another measure wiegf€y for taste intensities has
been used (e.g., Louviere et al. 2003) the soc&efficiency, defined as the trace
of the AVC:

A= trace(Q(ﬁ, % )) _ (6)

However, this measure seems to have encounteresl laeceptance and use within
the published literature.

One final measure, which we explore in this pagegs not look at the AVC matrix,
but rather the choice probabilities for the desiginis measure, proposed by Kessels
et al. (2006), is not explicitly meant to be usadaameasure of design efficiency,
however we use it here as a means of attemptimgnove alternatives that may be
dominated. The probability or utility balance odi@sign is given as:

S
Pr(Y =1)
D)
J
Eq. (7) will range between zero and 100 percenth whe percentage value

representing how balanced the probabilities (olitie) are over the alternatives
within the design. A zero value indicates that ¢hexists a completely dominate

(7)



alternative within each choice set, whereas a vafuE00 percent indicates that each
alternative in every choice set has an equal pibtyatf being chosen.

We note that although we deliberately restrictedldiscussion to the conditional logit

model, the principles are fully applicable to angdel of discrete choice, such as the
nested logit or mixed logit models. All it requirissthe computation of the adequate
information matrix (see e.g., Bliemer and Rose 2006

3.3 Design specificity and coefficient uncertainty

Two important observations are in order here, bothwhich clearly affect the
measurement of efficiency of a conditional logisid@. The first concerns the coding
of the variables in the matrk and it concerns the fact that efficiency dependthe
type of coding chosen (on the levels, effect-codorgdummy variable coding). As a
consequence, a design obtained under effect-coditighave different efficiency
value if the coding applied in estimation is dumwariable coding. Hence the
efficiency measures should not be compared acras$els with different coding
applied to the same design.

The second concerns the assumptions about thesvady which are the very quest
of a stated choice survey study and hence cannkmden with certainty at the time
of designing the experiment. However, they can ssimed with uncertainty by the
analyst and such uncertainty can be formally ddfingerms of a-priori distributions.

For this reason the literature distinguish betweeint D-error and Bayesian D-errors,
using the notation Pand Oy respectively. The latter is just an expectatideetaover
the assumed a-priori distributions #fSuppose, for example that the valuefFafe a
priori believed to be distributed Normally, withvactor of meang/ and matrix of
variancex, then the [ error would be:

D, error = I[det(Q B % ))]l/k Nz )g (8)

Of course, less informative priors can be involeath as uniform distributions over a
broad range of values.

3.4 Level of significance and design replicates

Of course, typically the survey will produce mamplications of the same design as
generally a design will be completed by more thae mespondent. In generating the
design, it is common to assume only a single redpot) however, this need not
always be the case. In particular, it is usefurssume more than one respondent
when subsets of a design are to be given to differespondents (this is commonly
achieved, e.g., viblocking of the design). Suppose that a design is brokenGn
subsets, with respondents reviewing each subset (notingrimaty be different for
eachG). Then the AVC matrix for the final model would:be

Qu(B.%)=Y.Q, (B.%) 9)

g.=1



Further, note that the AVC has dimensiinx K and that the asymptotic standard
errors for each estimate of the elementgBaire given by the squared root of the
diagonal of the AVC matrix:

S
| =Jdiag(z(6. %) (10)
S

This is sometimes used to derive a measure of ttheoietically) required design
replicates to achieve a given significance valueafahoice attribute coefficiektvia
the required-value and the relationship:

t 2
L, :%\/niﬁk -, { %?} (11)

For example, suppose one assumgsa 1.2 and derives a design with &= 2 but
wants to compute the number of design replicatesssary to achieve a five percent
significance for which the two-tailedvalue is=1.96. Then an adequate design size
can be of 11 replicates since:

t,s | 2
n, :{ ““ﬂ :F'%X 2} =10.67~ 11 (12)
B, 12

If the design is segmented into three differentsst consisting of different choice
sets, than one would need about 32-33 respondentschieve five percent
significance, assuming the prior parameter is cbr&uch a calculation may be made
for all k parameters, with the theoretical minimum sampe being the largest value
calculated (see e.g., Bliemer and Rose (2005),gdesihat seek to minimize the
sample size are termed S-efficient designs). Algfhathis illustration is informative to
clarify the relationship between design and samgiee required to achieve
significance off estimates, this is obviously a theoretical refalop and the selected
model is only a simplification of the real worldy that typically larger sample sizes
are necessary than those indicated. How much lavgedepend on the empirical
case at hand.

4. Design efficiency for prediction and for WTP

In many marketing and transport studies choice rxgaits are used to derive

predictions of choices, and in particular predictiaoon the effect of changes in the
choice attributes. So, other criteria rather thé#ficiency need be used to assess
designs when the stated choice exercise has tpeger Kessels et al. (2006) propose
the use of G- and V- optimality criteria for thepeximental choice context. These
criteria measure the variance of prediction, ratthemn the variance of the taste
intensities. In particular, G-optimality relates ttee minimization of themaximum



prediction variance in the design, while V-optimgalielates to the minimization of
theaverageprediction variance.

Finally, of central interest to the literature inmmarket valuation is the concept of
C-optimality, first introduced in the literature Byanninen (1993a,b). This criterion is
specifically suited for minimizing the variance fifnctions of model coefficient
estimates, such as willingness to pay. A frequemtlgpted specification for indirect
utility is linear in the parameter and specifieceoehoice attributes, one of which, for
valuation studies, must be the cost of the alter@ain these context, it can be shown
that the unit WTP for the attribute can be deriaada function of the coefficient
attributes:

_ B
wTp =P 13
_:Bcost ( )

This is a highly nonlinear function of the coeféiot estimates and the variance of this
can be approximated using the delta method.

The ML estimator fo3is asymptotically normal, so that given consisgenc
(B, - B) 0 N, Var(g,, ) (14)

Take any continuous function twice or more différ@nle g(5). Use the first two
terms of a Taylor series approximation to exparsatund the estimates as follows:

9(Bu)=9(B)+09B) (B~ ) (15)

Where [g(f) is the vector of first derivative (gradient of g@nd ‘ indicates
transposition.

We can compute the variance of this linear funcsiorthat:
Var[ g(B,.)|=0uB) Var(B,, )0 dp). (16)

Having this approximation all we need to do nowoisubstitute g(.) witha/, where
to avoid notational clutter induced by the use wj-scripts we indicate with the
taste intensity of the generic attribute and v@tine cost coefficient.

First note that,% =-a(pB)™", this makes the use of the product rule to dettivee

gradient easier:

o(-a™)
_ —1_f‘_ oa __,B_l
0= J# o {aﬂ‘z} o
o

So that:

10



Var[ g(B,.)]= Do(B) VarB, )0 dB) =

e | Var(@) Covua,B)||-p7" (18)
|: B ap ]{COV(O’,,B) Var(B) :||:O’IB_2}

Multiplying the first row vector by the matrix gise
[-BN(a)+ap~C(a.B) -B7'Cla,.B)+aB™V(B)] (19
Then, multiplying the resulting row vector by thedl column vector gives:

=B -BN(a)+aB*C(a,B)|+aB?[-BC(a.B)+ap NV(B)]
- Va{j‘ﬁj DB2[V(a)-2ap™'Cla.f)+ (@ !B)V(B)] 20

So, the C-criterion relates to the minimizationsath variance. One thing to note is
that, unlike in the case of CVM in which there igyoone WTP to derive, here the
variance relates to an elementkef WTPs. Furthermore, different attributes may be
described in different units. So, for example, vathattribute expressed in miles and
one in number of properties affected the WTP patr witl be referring to different
measures. Suppose one takes the sum d¢theariances, then minimizing such sum
may result in an unsatisfactory outcome if the mimn is obtained by diminishing
the variance unevenly across WTPs. For examplemihenum may be reached by
achieving a very small variance for attribute 1 le/teaving the variance for attribute
2 higher than desirable. Eq. (12) suggests a patemiterion, which is that of either
maximizing the minimunt-value for the WTP:

*

X =argmax mi

X
’ b,

bure
: (21)

or equivalently, that of minimizing the number oésign replicates necessary to
achieve the desired significance level for WTP:

DWTE
X, =argmin max (22)
K Durg.,

To our knowledge neither of these criteria has besed so far in the literature of
choice experiment design. We note in passing théliese criteria can be adapted so
as to be amenable to a Bayesian prior as discussedtion 3.3.

In conclusion of this criteria review we emphadimav various criteria are available

to evaluate a candidate design and each is paigiduitable to a specific purpose.
Of course when the stated choice exercise hasietyair purposes, then perhaps a

11



weighted combination of selected criteria can belegyed to derive the optimal
design >g] . A similar observation can be extended to thel Sp&cification. If the data

collection is likely to support a variety of spec#tions, then the AVC matrix may be
substituted by an adequate mixture of AVC matrire dor each specification.
However, we do not venture our empirical illuswatiin this territory, but note that
could constitute fertile ground for further resdarc

5. What design efficiency measure to report?

Ideally one would like to know exactly what the drunodel is in terms of both
specification ang3 values. Of course this is not attainable in pcactif it were, one
would have an ideal measure against which to gdwgearticular design used in the
study. Nevertheless, on the basis of what has dsenssed thus far, we are able to
make meaningful recommendations on what statigticeport in a study with regards
to the particular design employed. One must redlir® there are two separate
moments in a study. An initial stage at which ona plausibly postulate some prior
for £ on the basis of theory (e.g., tifefor cost is negative an@ for something
good—such as clean air—is positive), and formalihese expectation via a
distribution over a range of values. A final endstidy stage at which one has the
sample in hand and can derive an estimate of thalgion parameters conditional on
the collected data. These estimates are the bagalale at that stage, and might be
quite different from those postulated at the ihistage. Thetrue values of the
population coefficients, however, are still uncertaSo, although an absolute
efficiency ratio cannot be provided, one can coraphe relative efficiency of the
initial stage design using as a bench mark theagretudy design. Denoting by the
superscript 0 the initial stage priors and with e tend of study estimates we
recommend to report:

F %,é()’xlj) (23)

F(8.%)

whereF denotes the particular criterion of interest, #mel starred design indicates
optimization with respect to the end of study eatas. We would argue that any
other measure is not only relatively uninformatilzat in some cases it can even be
misguiding. Consider the frequent practice of réipgr100x NX'X** (e.g., Lusk and
Norwood 2005, p772) whend is the number of observation in the design Xritie
generic design matrix. This measure is virtuallgelevant with respect to the
operating conditions of discrete choice modellingder random utility models.
Additional criteria might also be reported to urglend the relationship between the
designs employed—which presumably has been deliyedptimizing according to
some valid criterion—and the values that the sam&gd affords with regards to
other criteria. So, for example, suppose one haaired the desigs;” used in the
study by optimizing for thé&/-p criterion, then it would probably be of interest t
contrast this design by using the more common Dteron:

D(5%)
D(4"%) &
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A high value of this ratio would illustrate thatspate having been derived with a
criterion that maximized efficiency in predictidhfurned out to perform well relative
to a design that would have been optimized fociefficy in coefficient estimates.

6. Algorithms for design optimization for efficient designs

We now turn our attention to a brief descriptiortleg various algorithms proposed in
the literature to search for improvements on adostsirting design, which can be—for
example—the typical fractional orthogonal of thdl factorial. Unfortunately, there
does not exist much theoretical guidance as tolwmiethod should be employed. We
are also not aware of studies that tested which tfpdesign construction method is
likely to produce the best results under variousuenstances in practice. A number
of algorithms have been proposed and implementethirwithe literature to
systematically search the various attribute levearmpements to identify efficient
designs. These algorithms operate mostly by sysiealig operating swaps across
the rows and columns of the matox. Typically, algorithms fall into one of two
categories; row and column based algorithms.

In row based algorithmsa large number of choice sets are first generated which
choice sets to be used in the survey are seletypdcally, the choice sets are drawn
from a full factorial design, although in many mstes the full factorial will be too
large (even with today's computing power) and i@l factorials may be generated
instead. This is precisely what the most widelydusew based algorithm, the
Modified Federov algorithm(Cook and Nachtsheim 1980), does. The algorithm
randomly draws choice sets from either a full factorial or fracial factorial design,
with the D-error of each random selection beingcwaked. The combination of
choice sets that produce the lowest D-error isirethas the most efficient design.
The algorithm is terminated either manually by tesearcher, when some stopping
criteria is achieved (e.g., no improvement in therir is achieved for 30 minutes) or
when all possible choice set combinations has leepfored. Row based algorithms
have the advantage of being able to reject poorcehset candidates at the initial
stage (e.g., choice sets in which the attributesomé or more alternatives are
dominated or where a particular combination ofilaites realistically cannot exist),
and as such, these choice sets will never appehe ifinal survey. Nevertheless, row
based algorithms generally find it difficult to m&iin attribute level balance (where
each attribute level appears an equal number eftiover the design).

Column based algorithmsn the other hand, begin by randomly generatidgsagn
and then systematically change the levels withinheaolumn (representing an
attribute in the survey) of the design. Whilststdifficult to reject poor choice sets
using column based algorithms, such algorithmscalpi are able to maintain
attribute level balance, particularly if the initja generated design has such a
property. In general, column based algorithms affiere flexibility and are generally
easier to use when dealing with designs with mémjce situations, but in some
cases (e.g., for unlabeled choice experiments anddecific designs such as those
where certain attribute level combinations are iftdbn) row based algorithms may
be more suitable.

13



Rather than relying solely on row based or coluraseld algorithms, some authors
suggest using combinations of both. Huber and ZAag1996) implemented the RSC
algorithm Relabeling Swappingand Cycling), which remains the most widely used
algorithm today. The RSC algorithm alternates betwelabeling (column based),
swapping(column based), andycling (row based) over many iterations. During the
relabeling phase, all occurrences for two or more attribatels within a column of
the design are switched (e.g., if attribute levdebnd 4 are relabelled then the column
containing the sequence of levels {1,3,4,2,4,1,3y@uld become {4,3,1,2,1,4,3,2}).
The swappingphase of the algorithm is similar to that of relidg, however only a
few of the attribute levels are changed within¢b&imn (e.g., swapping the first and
third values in {1,3,4,2,4,1,3,2} would yield {4132,4,1,3,2}). Thecycling phase of
the algorithm is row based, where the attributeelevare switched (similar to
relabeling but now across rows, not down column)iwvchoice sets, one choice set
at a time. The algorithm will generally try a numioé iterations of eitherelabeling
swappingor cycling before switching to another phase (typically @nél). Note
that not all phases have to be used with variooshamtions of RSC being possible.

7. The impact of scale on willingness to pay

One consideration must be made at this stage aheuscale parameter, which is
often a neglected issue in D-efficient designssTikiparticularly relevant when the
focus is on WTP estimation and when a status-questaat (or any alternative-
specific constant) is expected to be part of thiéytunction. WTP is a one-to-many
mapping of the vectog. In fact, infinite pairs of3,, (non-price coefficients) ang,
produce the same vector of WTP values. Supposeyahees off3 are as assumed
above. Scaling them all by any positive constantpces the same WTP estimates.
So implicitly in the assumption of values f@rthere is an assumption of the scale
coefficient.

When—instead—ultility includes an alternative-spieabnstant of some sort, scaling
the vector by any amount has an effect on the utility differes across alternatives,
which are not scaled by the same constant. Sopdegeon the assumed scale of the
Gumbel error, the same WTP vector can be assocuittdlarge or small utility
differences with the status-quo, and hence diffedice probabilities. Table 1
illustrates this case in which the levels of theilaites in the SQ choice are assumed
to be the baseline (equal to zero) and hence tledslén the designed alternatives 1
and 2 are expressed as differences from those iB8@h

This is, of course a corollary to the fact thathnét high scale (small error variance)
the choice probabilities become deterministic. Heaveit highlights how important

an adequate specification of the error scale iheéoevaluation of the design in the
presence of alternative-specific constants. Foivangscale though, the criteria of
different designs can be compared. We hence nowttua comparison of designs
generated under the assumption of a multinomiat kggcification for a given case
study.
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Table 1: Demonstration of impact of scaling on modeutcomes

A=1
Bl 1 2 3 -1Bx AVig Pr(j)
x0 1 2 2 2 9 8 0952
%0 2 2 1 3 6 5 0047
sc1 0 00 0 1 0 0000
WTP1 1 2 3 -1

A=05

B0.50.5 1 1.5-0.5P'% AVigq Pr(j)

x0 1 2 2 2 45 4 0.806
X0 2 2 1 3 3 25 0.180
scl1 0 0 0O 0 05 0 0.015
WTP1 1 2 3 -1
A=0.2

B0.20.20.40.6-0.2 B'x; AVjs Pr(j)

x0 1 2 2 2 1816 0.571

X0 2 2 1 3 12 1 0.313

sqgl 0 0 0 O 0.2 0O 0.115
WTP1 1 2 3 -1

8. Case Study
8.1 The Case Study Setting

This case study is devised to illustrate the caersiibns a researcher can make when
engaged in developing a “typical” non-market valrastudy. A recent review on the
design solutions used in published non-market vminastudies (Ferrini and Scarpa
2007) suggests that a common set-up is that of Wwiaviere et al. (2000) called an
unlabelled design based on a choice task involtrgindication of the favourite
alternative amongst three. Two of these have leaets attributes developed on the
basis of a design, while the third represents th&us-quo (see Breffle and Rowe
(2002) for a discussion of the inclusion of thetisdequo alternatives in non-market
valuation studies and Scarpa et al. (2005) for secmometric insights). We hence
adopt this framework, but caution the reader treategalizing the results from this
case study to other contexts might well be unwaehn

Most published studies investigate a range of Bdice attributes plus the cost of the
package to the respondent. We hence present re$utslesign with three attributes
plus price and a status-quo constant. We posttiatethe analyst is able to define
some a-priori beliefs on the values of e&ector that can be adequately formalized.
We assume that since much of the literature reguositive status-quo effects, the
element off3 relating to the status-quo is assumed to be pesitnd equal to unity.
The price effect is of course negative and alsoak¢p one. The three attributes
differentiating the alternatives are assumed toekgressed as positive effects on
utility and orderable in terms of a gradient omeo,tand three. While one can very
frequently express attributes in a way that cagdrerally expected to be perceived
and evaluated by respondents as having a spedaiéctidnal (positive or negative)
effect on utility, the cardinal scaling is argualthe strongest a-priori assumption.
However, this assumption can be relaxed by assumimiystributional form with
overlapping densities, as we will see later.
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The size of the design is of 20 choice sets, ardd#sign attributes can all take four
values (0,1,2,3) except price which can take fexels (these are 0,1,2,3,4). A size of
20 is not unusual and can be shared out acrossféiveor two respondents to obtain
a balanced panel of respectively four, five andchBices per respondent. In non-
market valuation studies it is frequently foundtttiee number of levels used for the
price attribute is larger than those used for nocepattributes.

8.2 Design Procedure Exploration

Fifteen designs are generated and compared acroemsga of criteria. In order to
demonstrate why it is important to use experimedtsdigns for stated preference
studies, the first two designs we report were congtd using a purely random
allocation of the attribute levels to the designgénerating the first design, we do not
assume attribute level balance (i.e., each levelnoattribute may appear an uneven
number of times over the 20 choice sets), whereashke second design, attribute
level balance was enforced as a design criteribrefhaining designs also assume
attribute level balance. Unlike Designs 1 and 2siges 3 to 5 and 9 to 15 were
constructed using the RSC algorithm (see Secti@s&)ming (different) optimisation
criterion. Design 6 was constructed in a mannemfoich the RSC algorithm was not
appropriate and hence only swapping was used. b®sigand 8 are orthogonal
designs, for which the RSC algorithm is also inappate.

Designs 3, 4 and 5 represent designs constructimg the D-efficient criteria given
as Eq. (5), and they illustrate the effect of viagythe scale parameter in this context,
as discussed in Section 7. In generating Desigwe3assumed as prior parameter
estimates, the values discussed above. In Desige double the magnitude of the
prior parameter estimates, whereas Design 5 hétheemagnitudes.

The sixth design was constructed also using theffibient criteria, however, a
number of restrictions were placed on the desigmecBically, the design was
generated such that the attribute levels for onth@fmon status-quo alternatives are
always lower than that of the other non statusajteynative. Given that higher levels
for the non-price attributes are assumed to be npoeferred (i.e., the prior
parameters assumed were all positive for thesiatits) whilst higher values for the
price attribute are more preferred (i.e., a negapitior parameter) this design forces
respondents to trade (simultaneously) the non-@itéutes with price within each
choice set. Such a constraint is designed to erteatesome form of trading always
takes place in choice tasks. However, we note shattly speaking one cannot
assume that generating a design in this mannerawdid dominance in terms of
preference’s

! Dominance implies that all respondents actingoratily will always select one alternative over all
others present. Design 6 ensures that respondéihtsewfaced with a comparison between a lower
‘quality lower price alternative and a highguality higher price alternative, but says nothing abbat t
probability that one of the alternatives will beoskn. To establish whether an alternative is damtiha
or not, the analyst would need to calculate theécehprobabilities (which are function of the design
attributes and (prior) parameters). Once the chgiobabilities are determined, the analyst woulgdhe

to establish some rule as to what constitutes airdded alternative based on the expected choice
probabilities (e.g., if the probability is lessthd.1).
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Designs 7 and 8 are orthogonal fractional factodasigns. In constructing the
designs, no orthogonal design could be found thatved for zero correlations both
within and between the attributes of alternativis.such a sequential design process
was employed (see Louviere et al. 2000). This m®evolves first constructing an
orthogonal design for alternative 1, and then udimg same design to construct
alternative 2. The process ensures that the design®rthogonal in the attributes
within alternatives, but not between alternativ€sven that the experiment is
assumed to be unlabeled, the between alternativelations are not of concern and
hence the design process is appropriate. Whilshtaiaing the (within alternative)
orthogonality constraint, the D-efficient critemas also applied to Design 8.

Designs 9, 10 and 11 are non-orthogonal designergtad to minimise respectively
A- (Eq.(6), S- (Eq.(10) and B- (Eq.(7)) efficiencsiteria. The remaining designs are
generated in such a way as to minimise the sumhefQ-efficiency measures
(Eq.(20)). Designs 12 and 14 consider only theavees of the WTP values for the
design attributes, whereas Designs 13 and 15 alssider the variance of the WTP
for the status-quo constant. To illustrate the iligixy afforded by applying the C-
criterion we use different weights for the variasmcef the WTPs of different
attributes, when generating the last two desigmshat the criterion employed is the
minimization of the weighted sum of the variancenponents of the attribute WTPs.
This flexibility may be important in practice whelme object of a stated preference
study is to specifically calculate the WTP for dset of the design attributes. The full
set may include attributes considered importartiwitespondent’s preference space,
but irrelevant from the viewpoint of WTP estimatioAlternatively, the absolute
magnitudes of the WTP outcomes may also guide whetreighting should be
applied, for example whether it is to be expressedbllars or cents. For the present
study, in constructing Design 14, attribute 1 isigised the largest value of 0.4
because it is the one with lowest absolute WTPsukh, more precision (efficiency)
is needed for this attribute relatively to the osh® obtain a WTP estimate different
from zero. For similar reasons attribute 2 is assiga value of 0.35, and Attribute 3
of 0.25. The status-quo constant is ignored in dieisign, and hence has a weight of
zero. A similar weighting procedure is applied angrating Design 15, with weights
of 0.4, 0.3, 0.2 and 0.1 being applied to eachhefdesign attributes and status-quo
constant respectively.

8.3 Design Outcomes

Tables 2 and 3 present various efficiency meastmegach of the 15 designs we
generated. For each efficiency measure, excludiegB-efficiency measure, values
are presented based on whether the constant texomssdered in their calculation or
not. As would be expected, the two random desigr$opm very poorly on each
efficiency measure presented in the table. Thisamug, however, is based on random
chance, and different results might have been oddai a different random allocation
of the attribute levels were considered. The D+edesign (Design 3) appears to
perform very well on all criteria except B-errorc@rding to the S-error for the
design, a minimum of seven replications of the gteqirepresenting 140 choice
observations) are required for all parametersuutiog the status-quo constant to be
statistically significant at the 1.96 level. Of cs@ this, number assumes that the prior
parameter used is correct, hence, this represahtshe theoretical minimum number
of design replications that should be collected.
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Table 2: Efficiency level outcomes for Designs 1 tth

D-error A-error C-error \Weighted C-error S-error
Without | With [Wwithout | With [without | With [Without | With [Without | with |B-éror
Design|Effect Constant| Constant] Constant| Constant] Constant| Constant] Constant| Constant]Constant Constant

1 |Base Design (random - unbalancg¢d)  0.998 2.136 1707, 2.306 | 111.894 10.07p - - 294.3790.076 | 0.06%4
2 |Base Design (random - balanced 0.920 1.398 4.842.202 22.677 8.630 - - 59.270 9.21B 1.6f%
3 |D-error 0.120 0.189 1.052 0.90% 2.030 0.519 - {1 .238 1.001 | 10.03%
4 |Scale upfx2) 0.198 0.290 3.612 3.894 0.656 0.196 - - 9.529 .018 | 7.77%
5 |Scale downfx0.5) 0.076 0.126 0.448 0.200 7.956 2.034 - - 42.071.396 | 21.96%
6 |Constrained trade-off 2.768 2.43p 7.586 8.6p9 .69%H| 29.682 - - 13.104 10.89¢ 3.04%
7 |Random orthogonal 1.847 1.64p 5.282 5.6p2 20.0312.398 - - 15.368 8.786] 16.21%
8 |Efficient orthogonal 0.580 0.664 1.457 1.044 234 11.043 - - 12.255 4.337] 11.91%
9 |A-error 0.212 0.283 0.653 0.52f 2.503 1.230 - 4 .45a 0.943 | 10.25%
10 |S-eff 0.330 0.369 1.218 1.35% 2.471 1.3p7 - {1 59@.| 1.782 | 18.78%
11 |B-error 0.430 0.455 1.818 1.66p 4.505 2.1p8 . 9.309 2.175 | 44.45%
12 |C-error (attributes only) 0.153 0.28} 4.282 298 6.456 0.455 - - 36.386  3.299 7.53%
13 |C-error (attributes + SQ) 0.206 0.26p 2.838 3.18 1.454 0.551 - - 5.585 3.454 21.4P%
14 |Weighted C-error (attributes only) 0.244 0.3¢2 .12 5.821 1.496 5.987 0.666 0.666 8.902 6.37 6281
15 |Weighted C-error (attributes + SQ) 0.183 0.2%1 .772 3.043 1.601 0.501 0.966 0.526 6.602 3.5p7 3¥|1
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Designs 4 and 5 represent the impact of assumiffgreht prior parameter scales when
generating the design. Contradictory results aredyeed when doubling and halving the
magnitudes of the parameter priors. Halving therprproduce superior D- and A-error results,
but dramatically worse results in terms of WTP aathple size requirements when compared to
a doubling of the parameter prior scale. Theselteegue counter-intuitive, as one would expect
that doubling the assumed scale of the error (De$jgand hence increasing the precision should
lead to a higher efficiency. Instead, one obsethesopposite. Increasing scale decreases the
information content of the design f@rwhile it increases it for the attribute WTPs. Qruessible
cause for this might be that in generating thegigsihe attribute levels used are the same as
those used for Design 3, and since it is differenge utility that matter most, the utility
differences observed with a scaled up seBaire larger and induce large variations in choice
probabilities, at the expenses of design balans=daed information content. The opposite may
also explain findings for Design 5 where the scdlthe priors is half that of Design 3.

Ignoring the randomly generated designs and desidnese the parameter priors have been re-
scaled, Design 6 performs quite poorly based oordéria when compared to the other designs.
This is because the trade-off constraint, whilstrapting to conform to some analyst imposed
behavioural heuristic, fails to consider the staié requirements that improve the statistical
efficiency of experimental designs. In particuldlre AVC matrix of a design, from which all
efficiency measures are derived (save for the Bremeasure), is the inverse of the second
derivatives of the log-likelihood function for tldesign. As such, the AVC matrix is intrinsically
related to the choice probabilities that the desigih likely produce (given prior parameter
estimates). In setting up the (behavioural) comdirgéhe expected choice probabilities for the
design are also constrained, which in turn impaatshe design AVC matrix and its efficiency.
As such, this design strategy, whilst behaviouratlyactive, is likely to produce poor outcomes
in terms of model results.

Design 7 represents the currently predominant ntetheed for generating stated choice
experimental designs. However, as shown here, sheotiorthogonal designs tends to produce
less than optimal outcomes in terms of expectedetbults, requiring larger sample sizes to
retrieve statistically significant parameter estiesathan other non-orthogonal designs. Design 8
represents an improvement on Design 7 by emplaginglgorithm that minimises the D-error of
the design whilst maintaining orthogonality. Even the imposition of orthogonality represents a
constraint on the efficiency of stated choice desigor the exact same reasons as given for
Design 6 poor performance. That is, the imposit@minorthogonality only relates to the
correlation structure of the design, but says motlaf the choice probabilities and hence AVC
matrix that the design will likely produte

Designs 9 to 11 were constructed so as to miniiseS and B- errors respectively. In each
case, the designs produce the lowest (highesth@Bterror design) values for the criteria for
which the design was optimised. These designs agpegerform very similarly on all other
criteria, however, the B-error design (Design 1dpears to require a larger minimum number of
design replications in order to retrieve statidlycaignificant parameter and WTP values. This
finding is consistent with Sandor and Wedel (202202, 2005) and Kanninen (2002) who
demonstrated that complete utility balance, asargl by Huber and Zwerina (1996), will result
in sub-optimal designs.

2 This statement is strictly not true. An orthogodasign will be optimal when all parameter priars assumed to
be zero (that is not important in the decision pss§. As such, orthogonal designs will only reqtire smallest
possible design replications relative to all otdesigns when one is willing to assume that thebatis in the
design do not play a role in the observed choices.
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Table 3: T-ratio (assuming a single design replicain) and minimum design replication requirements byattribute for Designs 1 to 15

B WTP B WTP B WTP
[t-values| n |tvalues| n |tvalues| n |tvalues| n |tvalues| n |tvalues| n
Design 1 Random allocation (unbalancgd) DesignRandom allocation (balanced) Design 3  Degdfit
Constant 0.255 59.270 0.267 53.9p2 0.114 2941379 1060. 340.096 0.785 6.2349 0.814 5.8(
B1 0.646 9.218 0.858 5.214 1.113 3.108 0.737 7.068 591.9 1.001 3.589 0.298
B2 1.427 1.886 1.347 2.114 1.681 1.359 0.647 9.173 0.0 0.960 5.016 0.153
B3 1.712 1.311 1.333 2.1643 1.434 1.868 0.867 5111 612.0 0.904 5.642 0.121
B4 0.854 5.268 n.a. n.a. 0.617 10.076 n.a. n.q. 1.9770.983 n.a. n.a.
Design 4 (x2 Design 5 x0.5 Design 6 Trade-off constrained
Constant 0.635 9.529 0.721 7.385 0.417 22.070 0.41122.749 0.541 13.104 0.408 23.0]
B1 1.951 1.010 7.294 0.072 1.659 1.396 1.744 1.263 120.6 10.243 0.567 11.96
B2 1.961 0.999 8.223 0.057 2.194 0.798 2.649 0.548 940.5 10.896 0.578 11.51
B3 1.966 0.994 9.596 0.0472 2.279 0.740 2.816 0.484 89%0.6 8.097 0.786 6.222
B4 1.945 1.015 n.a. n.a. 1.893 1.07p n.a. n.q. 0.807 .9045 n.a. n.a.
Design 7 Orthogonal Design 8 Orthogonal efficient esign 9 A-efficient
Constant 0.500 15.368 0.362 29.347 0.560 12.255 960.3 24.509 0.928 4.456 0.886 4.89
B1 0.753 6.769 0.890 4.841 1.732 1.281 1.137 2970 1.0 0.943 2.186 0.804
B2 0.964 4.130 1.079 3.307 2.087 0.882 1.142 2944 32.6 0.554 3.171 0.382
B3 0.800 6.001 1.081 3.286 2.290 0.733 1.118 3.0/5 6&.8 0.467 3.802 0.266
B4 0.661 8.786 n.a. n.a. 0.941 4.33) n.a. n.q. 2.310 .7200 n.a. n.a.
Design 10 fficient Design 11 Befficient Design 12 Gefficient attr. only

Constant 1.217 2.596 0.935 4.393 0.642 9.3p9 0.6469.210 0.325 36.384 0.408 23.04
B1 1.495 1.718 1.891 1.074 1.329 2.17b 1.675 1.369 801.0 3.293 3.881 0.255
B2 1.693 1.340 3.021 0.421 1.584 1.532 2.344 0.699 091.1 3.122 5.323 0.136
B3 1.702 1.326 3.843 0.26( 1.501 1.705 2.966 0.437 33L.1 2.995 6.025 0.10¢
B4 1.468 1.782 n.a. n.a. 1.400 1.95p n.a. n.q. 1.109 .1253 n.a. n.a.

Design 13 Gefficient attr. + sq Design 14 Weighted,@fficient attr. only | Design 15 Weighted,@fficient attr. + sq
Constant 0.829 5.585 1.052 3.470 0.657 8.9p2 1.0233.671 0.763 6.602 0.954 4.22
B1 1.064 3.391 3.333 0.346 0.778 6.34)7 3.478 0.318 441.0 3.527 3.525 0.309
B2 1.055 3.454 4.714 0.1743 0.800 5.996 4.563 0.185 051.1 3.145 5.127 0.144
B3 1.100 3.175 5.662 0.12d 0.807 5.904 5.826 0.1n3 221.1 3.051 5.786 0.115
B4 1.103 3.156 n.a. n.a. 0.801 5.98) n.a. n.q. 1.097 .1923 n.a. n.a.
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Our last group of comparisons are made across resigtained by using various
specifications of C-efficiency as the optimizaticniteria. These designs perform well
compared to most other designs, however, a numb&soes arise which require
further discussion. Firstly, the theoretical minmmuumber of design replications
required for Design 12 is 37 (740 choice observadiaf all parameters are to be
found to be statistically significant as per Eqg)(18ssuming the priors have been
correctly specified). Table 3, demonstrates thengdgtic t-ratios for each attribute
and WTP for each design, as well as the numberesigd replications required in
order for the asymptotic-ratios to be greater than 1.96. An examinatiothisf Table
for Design 12 shows that the requirement for 37icafons of the design is a result
of the status-quo constant, which was not consitesgen generating the design. As
such, it is questionable as to whether one woultsider 37 replications or the next
highest value of four replications to be the minmu

A second observation relates to the use of thefi€ezicy criteria as expressed
previously. The C-efficiency criteria as implemeahteere relates only to the variances
of the ratios of two parameters, and not the vagarof the parameters themselves.
Whilst there exists a relationship between the tihe,additional non-variance terms
contained within EqQ.(20) may compensate for largarameter variances when
minimising the equation. As such, it may be pogstbl minimise the variance of the
ratio of the two parameters whilst obtaining atieéy large variance for one or more
of the parameters themselves. This has implicatwimsn calculating the WTP for
that attribute and it is clearly demonstrated ibl€a8. Consider for example, Design
13. For the status-quo constant term to achievaesgmptotict-ratio of 1.96, at least
six (rounding up from 5.585) design replicationse arequired (120 choice
observations), whereas only four (rounding up ff®a70) replications are required
(80 choice observations) for the WTP for the stafus constant term to achieve
statistical significance. Given that the WTP foradtribute should only be calculated
if the individual parameters are statistically sigant, the higher value of the two
should be used (i.e., six design replications).eArsh through Table 3 reveals that
Designs 9 (A-efficiency) and 10 (S-efficiency), Ishirequiring a larger number of
design replications for all WTP values to becomatigically significant, would
require only five design replications (i.e., 10M@icke observations) for all parameter
and WTP values to be statistically efficient. Aslsuthese designs would be preferred
based on these criteria.

Whilst we do not implement it here, it should begible to create a new optimisation
criterion similar to the S-efficiency measure thainimises the largest sample size
required for the ratios of two parameters to béissieally significant. Indeed, one
could combine this with the current S-efficiencyasere, and jointly minimise both.

7. Conclusion and direction of further research

The use of stated preference methods has becomeasingly accepted in the policy
arena as a way to investigate non-market valueklwiale. Yet, choice modelling has
not been subject to the degree of investigation sordtiny dedicated to contingent
valuation in the nonmarket valuation literaturetMparticular regards to the topic of
experimental design tailored to the specific neexfs non-market valuation

practitioners the literature is still scarce. Tkisidy had the objective of bringing
together a number of considerations and statigiasthe practitioner could find of
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interest. In particular, the principles outlineddean be adopted in the evaluation of
choice model designs predicated under differenirapsions from the one used for
convenience here as the main example.

C-efficiency, for example, is a criterion for dasigvaluation that although proposed
over 15 years ago, is still rarely used. Sample d&termination, as we explained here
can be theoretically linked to design propertiex] aan itself be used as a criterion
for design search. Importantly, we suggest altereatvays of reporting design
statistics in applied studies that go beyond tleguently used percent efficiency
criterion originally proposed for multivariate lise regression studies explaining
treatment effects in agricultural experiments. Wevs how this criterion is irrelevant
and a bad proxy for C-efficiency, which ought towleat matters when the focus is
WTP estimation.

We have intentionally neglected several importanhsiderations related to the
behavioural efficiency of the design, concentratimgr focus on the statistical
efficiency and the comparison of different critet@a practically measure it. Future
research should focus on respondent efficiencyels wthough perhaps the current
level knowledge on how respondents process thenmE#ton provided in choice tasks
is still insufficient to derive efficiency measurtes evaluate behavioural efficiency,
this knowledge gap is filling quickly. For examplextensive research has been
conducted on the impact upon behavioural resporgigen various design
dimensions. For example, the number of alternatwitsin the task (Hensher et al.
2001), the number of attributes (Pullman et al.999%he number of attributes and
alternatives (Arentze et al. 2003; DeShazo and Be2@®1), the impact of attribute
level range upon response (Cooke and Mellers 108ter et al. 2000; Verlegh et al.
2002) and the number of choice profiles shown gpoadents (Brazell and Louviere
1998) have all been examined. More recently, Han&@94, 2006a,b) and Caussade
et al. (2005) examined all of the above effectsutiameously. Nevertheless, an
examination of the combination of the design arspoedent efficiency remains to
date, ever elusive.
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