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Abstract 
 

 

The recently introduced (Train 2016) logit-mixed logit (LML) model is a key advancement in 

choice modelling: it generalizes many previous parametric and semi-nonparametric methods 

to represent taste heterogeneity for bundled nonmarket goods and services. We report results 

from Monte Carlo experiments designed to assess performance across workable sample sizes 

and to retrieve data-driven random coefficients distributions in the three variants of the LML 

model proposed in the seminal paper. Assuming a multi-modal data generating process, with 

a panel of four and eight choices per respondent, we compare the performance of WTP-space 

LML models with conventional parametric model specifications based on the Mixed logit 

model with normals (MXL-N) in preference and WTP space. Results are encouraging and 

support the adoption of flexible LML specifications with a high number of parameters as they 

seem to do better, but only at large enough sample sizes. To explore the saliency of the 

Monte Carlo results in an empirical application, we use data obtained from a discrete choice 

experiment to derive preferences for tap water quality in the province of Vicenza (northern 

Italy). LML models retrieve multimodal and asymmetric distributions of marginal WTPs for 

water quality attributes. Results show not only how the shape of such distributions vary 

across tap water attributes, but also the importance of being able to uncover them, 

considering that they would be hidden when using the MNL-N.  
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Introduction

Preference heterogeneity affects welfare estimates obtained from discrete choice models.
The effects are particularly salient when such models are based on surveys developed
for nonmarket valuation studies. A case in point is their use to inform the process of
definition and negotiation of service tariffs in regulated industries. Tap water supply is
a complex quasi-public good jointly managed by water utilities and regulatory bodies
(Willis and Scarpa, 2002; Willis et al., 2005; Hensher et al., 2005; Scarpa et al., 2007;
Rungie et al., 2014; Thiene et al., 2015) as natural monopolies. Regulatory bodies peri-
odically require water utilities to evaluate the adequacy of their tariffs to the economics
of long term investment plans. Thus, water utilities and their regulatory authorities are
interested in gathering information about customer preference in order to strategically
define investment in infrastructure for water delivery, water treatment and sewer ser-
vices. If a water factor service produces benefits to costumers of water utilities, this is
deemed worth investing on. But knowing the distribution features of the benefits is
also important. A high estimate of mean benefit might justify a comparatively higher
investment in securing the regularity of service in that specific water factor. But knowing
if the high benefit mean is underpinned by a bimodal distribution with a mode at a
relatively lower benefit value and a perhaps smaller mode at a higher level of benefits,
or instead by a single modal value centred on the mean, might induce different forms
of strategic investments. An understanding of the distributional features of customer
preference is therefore important.

Since the seminal work by Train (1998) the choice modelling approach has proved to
be an insightful way to investigate consumer preferences from choice survey data. In
addition to its popularity amongst transport and health analysts, this approach has been
embraced by applied economists who used it in a wide range of nonmarket valuations,
such as in food quality and safety (Balcombe and Fraser, 2011; Campbell and Doherty,
2012); landscape (Scarpa et al., 2009; de Ayala et al., 2015; Nordén et al., 2017); water
services (Hanley et al., 2006; Rigby et al., 2010; Brouwer et al., 2015; Thiene et al., 2015);
ecosystems services (Ohdoko and Yoshida, 2012; Thiene et al., 2012; Johnston et al., 2013;
Chaikaew et al., 2017); recreational activities (e.g. Thiene and Scarpa, 2009; Jacobsen
and Thorsen, 2010; Juutinen et al., 2014; Mejía and Brandt, 2015; Bertram et al., 2017;
Morey and Thiene, 2017); and energy resources (e.g. Scarpa and Willis, 2010; Willis et al.,
2011; Yoo and Ready, 2014; Yamamoto, 2015; Boeri and Longo, 2017; Bartczak et al.,
2017).

Over the past few decades, the field of choice modelling has witnessed a substantial
development in model specifications accounting for various forms of taste heterogeneity.
Taste variations can be decomposed into observed and unobserved preference hetero-
geneity, depending on whether such heterogeneity can be explained by observable
factors or not. Analysts, who model decision-making processes using random utility
maximization theory, cannot include all relevant factors that determine differences in
taste across people. Inevitably only part of the differences in taste are ‘observable’–in
the sense that their variation is associated to measurable variables–while the remainder
is due to unobservable or unmeasurable factors.

Before the advent of mixed logit models, the workhorse of this type of literature used
to be the Multinomial Logit (MNL) model McFadden (1973). This can capture observed
preference heterogeneity typically by interacting attributes with characteristics of the
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individual, but treatment of unobserved preference heterogeneity requires further
assumptions and a model extension. To take into account unobserved preference
heterogeneity, Boyd and Mellman (1980) introduced the mixed Mixed Logit (MXL) model
by taking the MNL specification and adding the assumption of the presence of random
parameters that follow a pre-specified parametric, continuous mixing distribution.
MXL became the new standard practice in choice modeling after McFadden and Train
(2000) showed that any random utility maximization process can be approximated up
to an arbitrary level by a MXL model, if mixing distributions of random parameters are
specified correctly. A contributory factor was the growth in the computational power of
microcomputers, that made the execution of estimation via simulation viable to most.

One issue that has received attention from the beginning is how to adequately char-
acterize taste distributions (Wedel et al., 1999; Hensher and Greene, 2003). A quick
perusal of recent publications can show that many applications still use parametric
distributions (either bounded or unbounded), in which at least some of the distribu-
tional features (e.g. part of their shape) are restricted a priori by the analyst’s choice
of distribution. For example, unbounded distributions by construction may have long
tails, significant density around zero values and may allow parameters to take either
positive or negative values, even when there are theoretical expectations on their signs.
This causes several problems: coefficient estimates with high density on value intervals
with theoretically unwarranted signs or with implausibly extreme values (too large or
too small to be realistic) may be obtained, which can jeopardize the credibility of the
results. For example, our literature review of the top 5 journals in environmental eco-
nomics shows that in the period 2012-2017 as many as 83 papers use mixed logit with
assumptions of normal distributions for the random parameters.

Bounded distributions overcome some of these problems (Train and Sonnier, 2005),
but still assume a well-shaped distribution and can overestimate the true mean toward
the bounds, biasing the welfare measures (Cherchi and Polak, 2005). Furthermore,
when the range of the cost coefficient has any positive density in proximity of zero,
boundedness of distributions for the utility coefficients in preference space settings, may
not imply boundedness of the implied WTP, which can still assume unrealistic values
(Scarpa, Thiene and Train, 2008). The most recent and promising advances adopt semi-
parametric or nonparametric models to capture the randomness in individuals’ tastes.
Here, the shape of the distribution is unknown and defined as part of the estimation
process. Further flexibility is necessary and this can be provided by semi-parametric
and non-parametric approaches, which are typically data-hungrier.

Several approaches have been proposed in the literature to estimate semiparametric
or nonparametric random coefficients in discrete choice models. Abe (1999) intro-
duced a framework to estimate semiparametric utility functions within the Multinomial
Logit model (MNL). With this methodology, splines can be used to model non-linear
influences on the response variable. While this model requires no a priori assumption
about the functional form, the amount of smoothness for each function (in terms of the
equivalent degrees of freedom) must be fixed before estimation. This approach has been
extended in Kneib et al. (2007), in which estimation of smoothing parameters is based
on a mixed model representation of penalized splines. Fukuda and Yai (2011), similarly,
proposed a semi-nonparametric model based on smoothing splines, by specifying cubic
spline functions for each explanatory variable.

Li (2011) proposed a semi-parametric choice model based on the B-splines approach
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developed in Eilers and Marx (1996). Fosgerau and Bierlaire (2007), instead, proposed a
method to approximate any continuous distribution using a Legendre polynomial. The
use of polynomials is a very flexible method to retrieve preference heterogeneity because
different distributions can be recovered simply by adding more terms to the series
expansion. Fosgerau and Hess (2007) compared the semi-nonparametric Legendre-
polynomial logit with other parametric logit models and found the semi-nonparametric
specification best in terms of retrieving the true distribution of the random parameters
(with true distributions ranging from Uniform to multi-modal). Such observation is
expected because of the flexibility of specifying a higher number of parameters in
semi-nonparametric approaches.

Scarpa, Thiene and Marangon (2008) used the semi-nonparametric polynomial ap-
proach and found that the use of a flexible taste distribution increased the plausibility
of the retrieved form of taste heterogeneity in their data, which emerged as bimodal,
with modes at both sides of zero, rather than unimodal centred on zero. The implication
being that rather than indifference to the attribute there was a population split between
those who deemed it mildly desirable and those who—instead—deemed it undesirable.
Bajari et al. (2007) proposed a method that takes advantage of a linear regression-type
specification. The authors assume that the population can be sorted into finite classes
or clusters (i.e. discrete number of preference parameters) and assert that their estima-
tor is non-parametric because any mixing distribution can be approximated by making
the number of classes large enough. However, this linear regression method may violate
some necessary constraints on the model parameters. To handle this issue, Fox et al.
(2011) re-parameterized MXL and derived a specification similar to that of Bajari et al.
(2007), but used inequality constrained linear least squares.

Train (2008) used computation-efficient EM algorithms for non-parametric esti-
mation of random parameter logit-type models. Fosgerau and Mabit (2013) suggest
drawing random numbers from some initial distribution (e.g. uniform) and transform
these draws using a polynomial or other function to generate the mixing distribution.
Similarly, Bastin et al. (2010) proposed a non-parametric method to approximate the
inverse cumulative distribution function of the mixing distribution. They use a polyno-
mial approximation of an initially chosen uniform distribution. A major limitation of
these procedures is the need of understanding the relationship between the shape of
the mixing distribution and that of the initial distributions.

Train (2016) has recently proposed the semi-nonparametric logit-mixed logit (LML)
model. As the name suggests, this model contains two logit formulations: one for the
decision maker’s probability to choose an alternative and another for the probability
of selecting a parameter from a finite parameter space. The exponential terms in
the latter logit formulation ensure a positive probability and the denominator ensures
normalization, i.e. all probabilities sum to one. In addition, the shape of the logarithm of
the mixing distribution can be defined by different type of functions such as polynomials,
step functions, and splines), among many others. This estimator has been supplied with
general purpose code in MatLab and presents very desirable computational features,
further examined and confirmed in Bansal et al. (2016).

The objective of this paper is twofold. Since LML provides a generalized and flexible
framework for semi-nonparametric mixed logit models, the number of observations
and of parameters required in order to adequately retrieve the underlying features of
random taste heterogeneity are worth exploring. Thus, in the first part of this paper,
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we conduct a Monte Carlo study to answer this questions. Specifically, we compare
results from LML models to those retrieved from traditional parametric specifications,
such as the MXL with normal distributions (MXL-N). The ability of LML to retrieve
parametric distributions (normal, log-normal, uniform, symmetric bimodal normal,
uniform, discrete and discrete log-normal) in specifications with utility in preference-
space has already been studied elsewhere (Bansal et al., 2016). We extend this work
by focussing on DGP with asymmetric bimodality and trimodality and on utility in
WTP-space because of their importance in applied welfare analysis for public goods and
their relation to median voter behaviour, and hence political markets for public good
provision (e.g. see the discussion in Mitchell and Carson, 1989). In the context of LML,
we also investigate the finding of Fosgerau and Hess (2007), which suggests that the
ability to recover an underlying distribution depends on the number of parameters in the
mixing distribution, i.e. a higher number of parameters yields a better approximation of
the true distribution.

In addition to the Monte Carlo studies, we provide an empirical case study in which
standard parametric approaches lead to overlooking some features that instead emerge
as important with LML. Specifically, we analyze the preferences of householders in a
part of the province of Vicenza (North Italy) for tap water attributes. The objective of this
empirical application is to explore the implications of alternative LML specifications
with varying number of parameters on the estimates of the distributions of WTP values
for the improvement of tap water services. Since the true distribution of WTP is not
known, we compare the distributions of WTP estimates of LML with MXL and explicitly
state the benefits of using LML over parametric specifications.

The remaining paper is organized as follows: section 2 illustrates MXL and LML
models, section 3 describes the Monte Carlo experiment design, Section 4 discusses
simulation results, section 5 illustrates the empirical study and its results. Finally,
section 6 draws the conclusions of the paper.

Econometric modeling

The Mixed Logit Model (MXL) with normals

The MXL model represents random taste heterogeneity by allowing for different prefer-
ence parameters for each decision-maker (Revelt and Train, 1998). The utility derived
by individual n from choosing alternative j in choice occasion t is logit:

Un j t = xn j t
′βn +εn j t , where n = 1, ..., N ; J = 1, ..., J ; t = 1, ...,T, (1)

and where βn is a vector of parameters for individual n which is assumed to follow a
continuous mixing distribution in the population; xn j t is a conformable column vector
of observed attributes of alternative i; εn j t is the error term assumed to follow a Gumbel
distribution. The conditional probability Pn( j t |βn) of individual n choosing alternative
j in choice occasion t is:

Pn( j t |βn) = exp(xn j t
′βn)∑J

k=1 exp(xnkt
′βn)

. (2)
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Many variants of the MXL models can be obtained by assuming different mixing dis-
tributions of the random parameters. The most common is the MXL-N that imposes a
multivariate normal mixing distribution, i.e., βn ∼ N (µ,Σ). Let ynkt = 1 if individual i
chooses alternative j in choice situation t , and 0 otherwise. For a panel of T choices,
the unconditional probability of the sequence of T preferred alternatives by individual
n is facing J alternatives is:

Pn( j T |β,Σ) =
∫ {

T∏
t=1

J∏
j=1

[
exp(xn j t

′βn)∑J
k=1 exp(xnkt

′βn)

]yn j t
}

f (βn |µ,Σ)dβn , (3)

where f (βn |µ,Σ) is the probability density function with mean hyperparameter vector
µ and variance-covariance matrix Σ for the random taste parameters βn . Hyperparam-
eters in the MXL-N model are estimated through the maximum simulated likelihood
estimator (Gouríeroux and Monfont, 1996).

The Logit-Mixed Logit Model (LML)

In LML models Train (2016), the joint mixing distribution of the random parameters βn

is assumed to be discrete over a finite support set S. Discretization is not a constraint
because the support set is essentially a multidimensional grid that can be made larger
and denser by considering a broader domain of parameters and a higher number of grid
points. The joint probability mass function of random parameters in LML is specified
by the following logit formula:

wn(βr |α) = Pr (βn =βr ) = exp(z(βr )′α)∑
s∈S exp(z(βs)′α)

, (4)

where α is a vector of parameters, z(βr ) defines the shape of the mixing distribution,
and r denotes the point in the grid for the evaluation ofβ. The unconditional probability
of the sequence of choices of individual n is the following weighted sum:

Pn( j T |α) = ∑
r∈S

{
T∏

t=1

J∏
j=1

[
exp(xn j t

′βr )∑J
k=1 exp(xnkt

′βr )

]yn j t
}

wn(βr |α). (5)

In LML models, the vector α is estimated using the maximum likelihood estimation
procedure. Inclusion of all the points of the support set in the estimation of LML is
unnecessary and computationally expensive, so a subset of points is drawn within S.
The logit formula in Eq. 4 to compute probability mass of random parameters results
into an efficient computation of the gradient of the sample loglikelihood, facilitating
gradient-based methods in estimation.

The z functions in LML models

A critical issue in LML model is the specification of the S variables that describe the
mixing distribution. Following Train (2016), we adopt three different functions: i ) poly-
nomials (LML-Poly), i i ) step function (LML-Step function), i i i ) spline (LML-Spline).

An important feature of LML-Poly is that many of the standard distributions can be
approximated by varying the order of the polynomial. For example, Train (2016) shows
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that the normal distribution can be introduced in LML framework by considering z(βr )
to be a second order polynomial of a special form. The polynomial can be extended to
higher orders to gain greater flexibility of the mixing distribution, bearing in mind that
the number of inflection points is equal to the polynomial order minus one. Among
the various categories of polynomials, orthogonal polynomials (e.g. Legendre, Hermite,
Jacobi, Chebyshev, Bernstein etc.) have the advantage of having uncorrelated terms.
Dependence among the elements of multi-dimensional β can still be captured by cross-
products of the terms of each element’s polynomial.

A second alternative to define z(βr ) is represented by a step function based on a grid
over the parameter ranges (i.e. the support set S). Suppose S is partitioned into M
subsets, labelled as Tm where m = {1,2, ..., M }. Let the probability mass function W (β)
be the same for all points within each subset, but different among subsets. The logit
formula for the probability masses in then:

wn(βr |α) = Pr (βn =βr ) = exp(
∑M

m=1αm I (βr ∈ Tm))∑
s∈S exp(

∑M
m=1αm I (βs ∈ Tm))

. (6)

The z variables are the M indicators which identify the subset containing βr . If the sub-
sets do not overlap, then one of the coefficients is normalized to zero. With overlapping
subsets, instead, one coefficient is normalized to zero for each possible way of covering
the set S. In LML-Step function the number of estimated parameters is equal to the
number of grid points.

Finally, a linear spline can be used to define z(β), once defined over h knots. Spline
functions connect piece-wise polynomial functions at a high degree of smoothness
and in a linear setting they can be written in the form α′z(β), as needed in the LML
specification. Consider a simple example of spline with h = 2 and with starting point at
β1, ending point in β4, and place the two knots at β2 and β3, with β1 <β3 <β3 <β4. Let
the corresponding elements of the vector α define the spline heights. The elements of
vector z(β) in this case are:

z1(β) =
(
1− β−β̄1

β̄2−β̄1

)
I (β≤ β̄2)

z2(β) =
(
β−β̄1

β̄2−β̄1

)
I (β≤ β̄2)+

(
1− β−β̄2

β̄3−β̄2

)
I (β̄2 <β≤ β̄3)

z3(β) =
(
β−β̄2

β̄3−β̄2

)
I (β̄2 <β≤ β̄3)+

(
1− β−β̄3

β̄4−β̄3

)
I (β3 <β)

z4(β) =
(
β−β̄3

β̄4−β̄3

)
I (β3 <β)

, (7)

where I (·) is an indicator function. In LML-Spline, the number of parameters is equal to
the number of knots plus one.

Monte Carlo experiment design

To assess the performances of different model specifications, we conducted a Monte
Carlo study based on three attributes. The first and the second attribute are assumed
to be non-monetary, whereas the third is assumed to be the price attribute. The two
non-monetary attributes were coded as dummy variables, taking the values of 0 and
1, indicating presence or absence in the alternative they describe. The price attribute
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was assumed to have two levels as well, having the values of 1 and 2. The Monte
Carlo experiment was developed under the assumption that the true data generation
processes (DGPs) are asymmetric and bi- and trimodal, and utility specified in WTP
space, so that coefficients are interpretable as marginal WTPs. Consistently with random
utility theory, it was assumed that a respondent chooses the alternative with maximum
utility between the two alternatives. The utility of respondent n for alternative j in
choice occasion t was specified as:

Un j t (βn) =λ∗
n(ω1

n x1
n j t +ω2

n x2
n j t −pn j t )+εn j t , (8)

whereλ∗
n is the price/scale coefficient andω1

n andω2
n are the marginal WTPs for attribute

1 and attribute 2. To compare performance of MXL-N and LML models at increasing
level of complexity of mW T P distributions, we generated two data generating processes
(DGP). In the first set, DGP 1, ω1

n and ω2
n were assumed to follow a bimodal distribution,

obtained by mixing two normal distributions, whereas the price/scale coefficient λ∗
n

was assumed to follow a mixture of two log-normal distributions (Figure 1 upper panel),
to ensure its positive sign. The price coefficient pi was assumed to be fixed to −1. Error
term εn j t was assumed to follow a standard Gumbel distribution. The distribution
parameters in DGP 1 were specified as asymmetric bimodal, as follows:

ω1
n ∼N (µ1,Σ1) with µ1 =

[
0.5
1.2

]
Σ1 =

[
0.04 0

0 0.04

]
with Pr =

[
0.3
0.7

]
, (9)

ω2
n ∼N (µ2,Σ2) with µ2 =

[−1.5
1.5

]
Σ2 =

[
0.25 0

0 0.25

]
with Pr =

[
0.6
0.4

]
, (10)

λ∗
n = exp(θ),θ ∼N (µ,Σ) with µ=

[
0.5
1

]
Σ=

[
0.25 0

0 1.0

]
with P =

[
0.5
0.5

]
. (11)

The shape of the distributions for both random coefficients (or mW T Ps) of attributes
in DGP 1, ω1 and ω2, are shown in the upper panel of Figure 1. Note that in the distri-
bution for ω1 the two modal densities differ: that for low benefits is much higher than
that for higher benefits. Also note that in the distribution for ω2 one mode is negative
and has higher density than the positive mode, to denote asymmetric distributions of
winners and losers linked to the supply of that binary level attribute. It is intuitive to
conclude that these two forms of asymmetric bimodality in the population distribution
of benefits from a public good provision will lead to importantly differences in policy
actions if they were confounded with a unimodal distribution with some intermediate
modal value.

In the DGP 2, we assumed mW T P have an asymmetric trimodal distribution, ob-
tained as a mixture of three normals (reported in Figure 1, lower panel). The distribution
parameters were given the following values:

ω1
n ∼N (µ1,Σ1) with µ1 =

 1.5
3.5

−1.2

Σ1 =
0.04 0 0

0 0.25 0
0 0 0.40

 with P =
0.3

0.3
0.4

 , (12)

8
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ω2
n ∼N (µ2,Σ2) with µ2 =

 5.5
3.0
1.2

Σ2 =
0.25 0 0

0 0.25 0
0 0 0.09

 with P =
0.3

0.3
0.4

 , (13)

λ∗
n = exp(θ),θ ∼N (µ,Σ) with µ=

[
0.1
1.2

]
Σ=

[
0.01 0

0 0.02

]
with P =

[
0.4
0.6

]
. (14)

The shape of the distributions for both random mW T Ps of attributes in DGP 2, ω1

and ω2, are shown in the lower panel of Figure 1. This time, in the distribution for
ω1 the two positive modal densities differ less than in DGP 1 and are contrasted by a
highest density around a negative mode. The distribution forω2 has only positive modal
values, but with three different densities, the highest of which is at low level of benefits,
accompanied by two similar level densities at higher benefit levels. As for DGP 1, it is
intuitive to conclude that these two forms of asymmetric trimodality in the benefits
distribution for a public good provision will also lead to vastly different optimal policy
actions.

For each of the r = 1, . . . ,1,000 simulated sets of discrete choice responses, we esti-
mated 14 models. These models consist of one MXL-N in preference space with normal
distributions for each non-price attribute, one MXL-N in WTP space with normal coeffi-
cients for all non-price attributes, four LML-Poly with varying number of parameters
(12, 24, 36, 48), four LML-Step with varying number of steps (12, 24, 36, 48), and four
LML-Spline with varying number of knots (12, 24, 36, 48). All LML models were in WTP-
space and all price coefficients were log-normal. Data generation and all estimations
were performed in MatLab using Train’s code adjusted to our purpose.

In estimation choice probabilities were simulated in the sample log-likelihood with
250 Halton draws in all models. To simulate the sampling distributions properties of
mW T P values from the MXL in preference space, 10,000 draws were taken from the
estimated distribution of each non-monetary attribute coefficient. Each draw was then
divided by a draw from the estimated distribution of the cost coefficient. Standard
statistics for the distribution of these WTPs were then calculated for these draws (but
see the caveats in Daly et al. (2012)). Bearing in mind that the mean squared error (MSE)
of an unbiased estimator equals its variance, to compare the performance of different
models we computed the MSE over the 1,000 experiments, as well as the mean relative
absolute error (MRAE) of the estimates, computing:

MSE = 1

R

R∑
r=1

(ω̂r −ω)2,r = 1, . . . ,1,000 (15)

MR AE = 1

R

R∑
r=1

∣∣∣∣ω̂r −ω
ω

∣∣∣∣ ,r = 1, . . . ,1,000 (16)

where ω is the WTP value used in the data generating process and ω̂r is the value
estimated from the r th Monte Carlo experiment. Furthermore, the local maxima and
minima of coefficients’ distributions retrieved in each experiment were computed and
compared, in order to assess the capability of different model specifications to retrieve
good approximations of the underlying true distribution from DGP 1 and DGP 2. In
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Figure 1: Kernel smoothing plots of mW T P in the 2 DGPs.

both DGP 1 and DGP 2 we used three experimental designs: i ) D-error minimizing
design, i i ) random design, i i i ) full factorial design. Note that under our asymmetric
multimodal DGPs the MXL-N is obviously biased, but it might nevertheless tradeoff
bias with lower variance under some conditions.

Results from the Monte Carlo experiment

The first important observation concerns the results obtained from different experi-
mental designs. We found that results are consistent across designs: the relative per-
formances of the various specifications are very similar. So, to save space, in what
follows we describe the results with focus on those obtained from datasets generated
with the D-error minimizing design. Similar results were also obtained with regards to
the accuracy measures MSE and MR AE and for this reason in the remainder we limit
our discussion to the MSE values across different models and DGPs. All omitted results
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are available from the authors upon request.

Short panel results, T = 4, bimodal distributions

Table 1 reports MSE values for estimates of the mean mW T P for attribute 1 and at-
tribute 2 as retrieved from datasets with four choice tasks per respondent, with DGP
1 that implemented asymmetric bimodal distributions of the real parameters. It is
immediately noticeable that, given ω, the value of MSE decreases as N increases: accu-
racy is increased by larger samples. For small samples (simulated respondents N = 70
and N = 210) the best performing model—that is, the one with the lowest MSE (and
MR AE )—is the MXL-N WTP space, which outperforms all LML models. A bias variance
tradeoff seems to take place at this level. At intermediate sample sizes (N = 490 and
N = 980 simulated respondents) some of the LML specifications outperformed the MXL
in WTP-space (e.g. LML-poly with κ= 36 for ω1 and LML-Spline with κ= 48 and κ= 24
for ω2), but it is only at large sample sizes (N = 1,960) that LML models consistently
outperformed the MNL-N WTP for some value of κ. At N = 1,960 there is also a clear
improvement in performance by LML models with higher dimensions of κ. Among LML
models based on step functions and splines the best model specifications were those
with κ= 48, whereas the best model specification among LML-Poly models was the one
with κ= 36 according to both MSE and MR AE .

In terms of identification of the optimal number of parameters κ to be adopted in
LML models for both bimodal coefficients, we obtain no clear indication at such sample
sizes. According to the MSE values for ω1, for the LML-Poly the best specification is the
one with κ= 24, followed by κ= 48 and then κ= 36. Moving to the results for LML-Step,
the best performing models are those with high number of κ (36 and 48). Finally, among
LML-Spline, the best performing model specification is the one with κ= 24, followed by
the one with κ= 36. For to the MSE for the second coefficient ω2, the best performing
LML-Poly has κ= 24 and 48; for the LML-Step κ= 48, while for the LML-Spline is the
one with κ= 36.

The second important distribution feature is its spread, often measured by the stan-
dard deviation. The MSE for these statistics of the Monte Carlo results are reported
in Table 2. As for the means, at the smallest sample size the MXL-N WTP outperforms
all models (and it always outperforms the MXL-N in preference space), but already at
N = 210 we have LML-Step with κ= 36 that does better and at higher sample sizes LML
models do better both more frequently and more consistently, especially at high values
of κ.

Long panel results, T = 8, bimodal distributions

Tables 3 and 4 reports the same statistics as above, but for the longer panel with eight
choice tasks per respondent (T = 8). So, the number of choices are doubled at each
sample size. Doubling the number of responses collected from each respondent obvi-
ously sharpens the estimation of the distributions of taste, as it allows for both better
panel designs and more information from more numerous choices. Whether and at
what sample size this difference becomes apparent with respect to T = 4 is an empirical
question we try to answer here. The results from datasets with small sample size (N = 70
and N = 210) are similar to those retrieved from datasets with four choice scenarios per
respondent, in that the MXL model outperforms the LML specifications and there are
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no clear indications about the effect of increasing the number of parameters of LML
specifications.

However, MSE for both means and standard deviations show that flexible LML specifi-
cations consistently surpass the MXL model at both intermediate and large sample sizes.
Similarly to the short panel results, for N = 980 respondents, each LML specification
outperformed the MXL model for some value of a κ. This suggests that increasing the
number of observations per respondent (a longer panel) does not seem to allow analysts
to retrieve substantively more accurate estimates with LML models at smaller sample
sizes. At both N = 980 and N = 1,960, it is also apparent that model specifications with
large κ outperform the others.

Short panel results, T = 4, trimodal distributions

We now move to the results for the choice data generated under the DGP 2 with asym-
metric trimodal distributions for ω1

n and ω2
n reported in Tables 5 and 6 for the case

with short panel. Results are similar to those retrieved for the first set of coefficients in
that the MXL-N WTP model always outperforms the MNL-N Pref. and does so for LML
models at small sample sizes. The main difference is that in this case, already a N = 490,
so at intermediate sample sizes, the MSE for LML are frequently smaller than those for
the MXL-N WTP. It seems to be the case that with a trimodal distribution DGP flexible
distribution models are more accurate than MXL-N at lower sample sizes, even with
short panel, especially the LML-Step and LML-Spline.

Long panel results, T = 8, trimodal distributions

Tables 7 and 8 report the same statistics for the long panel. No noticeable difference
is found from the results obtained for the short panel, indicating that doubling the
number of choices per respondent does not substantially change the tradeoff between
bias and sample size.

Bimodality

Tables 9-12 report the means and standard deviations of modal estimates of distribu-
tions of ω1

n and ω2
n from the various model specifications in both the short panels and

long panels. They all have in common the bimodal DGP 1 as true process.
The first important observation concerns the number of modal values retrieved

from different model specification. Naturally, MXL-N models (both in preference and
WTP space) are inherently unimodal and cannot, by their very nature, imply bimodal
distributions, but they are expected to retrieve a mean/mode/median at an intermediate
value between the modes of the underlying DGPs. Indeed the results confirm this.
Instead, LML models can retrieve bimodal distributions and do so in our experiment,
with a degree of accuracy that increases with the sample size. This confirms that LML
models are able to approximate better the shape of the true underlying distributions of
random coefficients, and should always be considered when unimodality is not well
supported a-priori, as it is often the case.

The second objective of the analysis was to identify how close the local maxima and
minima retrieved from different LML specification were to the true ones. In this sense,
it appears that increasing both the sample size and κ increases the accuracy of the
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estimates. In fact, the values that are closer to the real ones were obtained from LML
specifications with κ= 48 estimated using datasets with N = 1,980. Of course, one can
also compute MSE and MR AE values for modal estimates and compare them across
LML models. We have those results, but chose not to discuss them here.

Trimodality

Tables Tables 13-16 report the number of modal values from model estimated on data
from DGP 2 (trimodal real distributions of mWTPs). As for the bimodal case, MXL
model cannot retrieve the complex form of the real distributions, and deliver unimodal
distributions at intermediate values of the modes in the real data. LML specifications
with κ = 12, instead, always retrieve distributions with two modal values, instead of
three. On the other hand, LML specifications with κ = 48 always correctly retrieve
distribution with three modal values. Finally, LML specifications with intermediate
κ = 24−36 retrieve distributions with three modal values at intermediate and large
sample sizes, but bimodal distributions at lower N . As in previous cases, it is apparent
that increasing sample sizes and κ increases the accuracy of estimates. In fact, modal
values of distributions retrieved from model estimated from large datasets are closer to
the DGP values.

Overall the results suggest that LML models may outperform the standard MXL-N
specifications and represent more accurately complex distributions, but do so especially
at large N . With regards to the optimal κ to be used in LML models, it seems that high κ
values should be considered, but unsurprisingly they work better at large N .

Empirical application

To add saliency to the Monte Carlo results,we applied the estimator to an empirical appli-
cation based on a discrete choice experiment (DCE) focused on household preferences
for tap water attributes in the province of Vicenza (northern Italy).

The area under investigation is knwon as a tannery district. In fact, it is the most
important district of that type in Italy and one of the most important in Europe. It
accounts for nearly one third of fine European leather production (UNCI, 2010). The
leather industry is a potential big polluter, due to the fact that a large amount of water is
required to treat hides which are preserved using salts and usually travel from South
America. Consequently, water emissions from hides treatment plant affect freshwater
quality in the area. Historically this industry was located at the foothills of the Alps
and it prospered here because of the several artesian springs providing a regular flow
of one of the most pristine water sources in Italy. Water pollutants are present in low
concentrations in hides, but may have high toxicity as tanning processes make use
of toxic heavy metals like chrome and other chemical pollutants (e.g., sulphate and
sodium chloride). The current charging system for public wastewater processing is
based on threshold concentrations of contaminants per unit of volume of water used,
rather than on total discharged load of contaminants. Hence, large amounts of pristine
water from local springs are used to dilute concentrations of industrial pollutants. To
give a sense of proportion, the capacity of the local sewage plant is sufficient for a
population of 1.5 million, while the local population is only about 115,000 residents.
Thus, information about householders’ preferences for tap water attributes is crucial for
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local authorities in order to strategically set water tariffs and plan investments. Much of
the necessary treatment infrastructure would otherwise benefit tanneries, which would
then be heavily subsidized by residential water users, causing a major misallocation of
resources.

The DCE was based on five attributes, namely:
i ) the frequency with which chlorine odor can be smelled in water use (daily, once a

week, once a month, never or always),
i i ) the frequency with which chlorine taste could be tasted in the water (same fre-

quencies as for odor),
i i i ) turbidity due to fine air bubbles (absent, low, medium or high turbidity),
i v) calcium carbonate staining in pipes (presence/absence of staining), and
v) the cost attribute, which was described as the additional yearly amount of money

that a household would pay (in water bills) at current consumption levels.
The experimental design adopted in the study was based on the criterion of Bayesian

D-error minimization (Sándor and Wedel, 2001; Ferrini and Scarpa, 2007; Rose and
Bliemer, 2009) where the error was computed at parameter estimates obtained from a
preliminary prior study of 80 households based on a design orthogonal on the differ-
ences. The point estimates from the pilot study informed the prior distribution for the
Bayesian design, and the standard errors defined the variances of the prior distributions,
which were assumed normal. Probabilities were derived from a simulation based on
200 Halton draws, and used to construct a final design using Ngene (ChoiceMetrics,
2009). The designed resulted in 36 choice tasks, blocked into four orthogonal blocks of
nine choice tasks each.

Using the datasets obtained with the CE, we estimated 16 model specifications. These
models consist of:

• one MXL-N in preference space,
• one MXL-N in WTP space,
• two latent class models with respectively two and three classes, to capture per-

fectly correlated multimodality,
• four LML-Poly with varying dimensions of κ (22, 33, 44, 55),
• four LML-Step with varying dimensions of κ (22, 33, 44, 55),
• and four LML-Spline with varying dimensions of κ (22, 33, 44, 55).

Models were estimated using MatLab code available from K. Train website and choice
probabilities were simulated in the sample log-likelihood with 250 Halton draws. To
compare performance across models with different number of parameters we report
the simulated log-likelihood at convergence (lnL ∗), the Akaike information criteria
(AIC) and the Bayesian information criteria (BIC) are reported. Given the importance
of multimodality in this context, we also report the number of modal values of the
estimated distributions of random coefficients (mW T P ).

Given the Monte Carlo results and the large number of observations in our dataset,
we expect the LML models to outperform the MXL-N ones in terms of fit to the data.
We also expect that LML specifications with large number of parameters to outperform
those with small number of parameters. Finally, we expect LML specifications (espe-
cially those with large number of parameters) to be able to retrieve the features of real
underlying distributions, even when these are quite complex, such as asymmetric and
multimodal.
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Model fit and estimated modes

Table 17 reports the model fit statistics for all models. All the information criteria favor
LML specifications, as compared to the MXL and LC specifications. The results also
support the previous finding of an increase of model performance at large κ at this
sample size. In terms of performance across different z functions within LML, the LML-
Spline specification emerges as the best performing when based on κ= 55, according to
the AIC, but when based on κ= 44 according to the BIC, which applies a heavier penalty
on over-parameterization. A close second in fit is the LML-Step, which is also best at
κ= 55, according to the AIC, but at κ= 44 according to the BIC. In third position we find
LML-Poly, and in this case both AIC and BIC converge in indicating κ= 55 a the model
with best fit.

For the sake of space we only report and discuss the multimodality aspect of the
results. Table 18 reports the estimated modes of mW T P distributions. Obviously, MXL-
N retrieved unimodal distributions in all random coefficients. LML models with κ= 22
and κ = 33, instead, retrieved bimodal distributions for most of the coefficients. In
particular, LML-Poly with κ= 22 retrieved bimodal distributions for seven coefficients
and with κ = 33 did so for eight mW T P distributions. LML-Step κ = 22 retrieved
bimodal distributions for seven parameters and LML-Step with κ= 33 for nine mW T P
distributions. Similar number of bimodality are found in the estimates from LML-spline.

The histograms reported in the first and second rows of figure 2 are a good illustration
of the effect of an increase in κ on the estimated multimodality of the random WTP for
taste with weekly frequency and never. While with κ= 22 the two attributes appear to
have unimodal distributions, with κ= 44 they appear bimodal.

Distributions with three modal values where retrieved only from LML models with
κ = 44 and κ = 55 (e.g. see the bottom histograms in figure 2 for mild and extreme
turbidity). In particular, all the specifications with such number of parameters retrieved
tri-modal distributions for chlorine odor once per month, chlorine taste once per month,
medium and extra degrees of turbidity. All this information would be lost in MXL-N, and
plausibly in all conventional parametric distributions. We note that some multimodality
can be captured in means of individual-specific distributions, but those statistics are
of difficult interpretation at the population level (see chapter 11 in Train, 2009, for a
discussion).

Conclusions

This paper provides results from a Monte Carlo experiment and an empirical application
conducted to investigate the ability of different variants of the recently proposed Logit-
mixed Logit (LML) in retrieving the underlying heterogeneity distributions of random
parameters, with a focus on asymmetric multimodality. In the Monte Carlo experiment,
we estimated 14 models using datasets created with a data generation process in WTP
space. To ensure the stability of the parameter estimates, all models were estimated for
1,000 synthetic datasets and key conclusions were derived based on mean and modal
values. The first objective of this study was to investigate the performance of LML
models, with various numbers of parameters, on different workable sample sizes and
with different panel length.

Our findings suggest that LML models require large sample sizes to outperform tradi-
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Taste weekly, LML-Spline κ= 22 Taste never, LML-Spline κ= 22

Taste weekly, LML-Spline κ= 44 Odor never, LML-Spline κ= 44

Mild turbidity, LML-Spline κ= 44 Extreme turbidity, LML-Spline κ= 44

Figure 2: Distributions of WTP value estimates from various LML models.

tional MXL-N models. At sample sizes less than N = 490, LML models performed worse
than the traditional specifications based on the assumption of normally distributed
coefficients, unless the panel length T = 8. The second objective was to identify the op-
timal number of parameters to be adopted in LML model specification. Our hypothesis,
based on previous findings of studies on flexible choice models (Fosgerau and Hess,
2007), was that increasing the number of parameters yields better approximations of
the true distributions of the parameters.
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Our empirical findings support this hypothesis with a practically important qualifier,
in that LML specifications with large number of parameters outperformed those with
small ones only at large enough sample sizes. At smaller sample size there seem to be a
tradeoff between bias and variance in favour of MXL-N, especially under the correct
utility specification (in this case in WTP space). The results from LML models estimated
from datasets with low number of observations were mixed, and in many cases model
specifications with small number of parameters outperformed those with larger number
of parameters.

In our tap water preference study LML model suggests a pattern of multimodality
that cannot be captured by the MNL-N or other unimodal parametric distributions.
It is also inadequate to address such pattern with latent class models, as they do not
produce a good fit and impose perfect correlation of random coefficients within classes,
a restriction that the LML does not impose and for which we find no empirical evidence
in our data. Regulators intending to achieve economically and politically efficient
outcomes should be aware of the multimodal nature of preference for tap water in the
tannery district of the Province of Vicenza. The tariff thresholds necessary to trigger
majority voting in support of infrastructure investments that deliver only monthly
chlorine smell in water and mild turbidity might be lower than those suggested by
model estimates obtained with MXL-N models.

Overall, the results of our study do not support the blind use of very flexible mixing
distributions, as at times LML models with a large number of parameters performed
worse compared to both LML specifications with low number of parameters and MXL
models. Thus, as a general guideline, we suggest to adopt LML model specifications
with large number of parameters only when a sufficiently large number of observations
is available, i.e. large sample sizes and adequately long panels.

While this study provides some insights about LML performance, additional simula-
tion experiments are needed to evaluate the robustness of our conclusions. Additional
experiments can include a variety of data settings such as variation in the number of
alternatives, number of choice situations in the panel data, number of explanatory
variables in the utility equation, and correlation among parameters. Importantly, on
the practical side, analysts can no longer be excused to adopt parametric specifications
without providing robust theoretical justifications corroborated by empirical evidence.
This because the LML approach is sufficiently practical and general purpose software
has been made available for all to use (Train, 2016) and it has been recently extended to
allow for some fixed parameters in the specification (Bansal et al., 2016).
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Tables

Table 1: MSE for means of random coefficients in DGP 1 (bimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2

MXL-N Pref. 6 0.276 0.436 0.234 0.383 0.142 0.299 0.108 0.200 0.055 0.135
MXL-N WTP 6 0.165 0.301 0.095 0.281 0.038 0.208 0.013 0.128 0.009 0.104
LML-Poly 12 0.224 0.429 0.132 0.311 0.059 0.294 0.042 0.245 0.014 0.137

24 0.268 0.404 0.104 0.359 0.064 0.225 0.022 0.125 0.009 0.077
36 0.361 0.554 0.215 0.379 0.036 0.301 0.019 0.095 0.004 0.059
48 0.276 0.395 0.212 0.349 0.037 0.229 0.012 0.097 0.005 0.054

LML-Step 12 0.245 0.407 0.237 0.312 0.039 0.231 0.054 0.248 0.023 0.160
24 0.209 0.405 0.149 0.384 0.072 0.201 0.061 0.132 0.014 0.104
36 0.212 0.326 0.174 0.304 0.094 0.225 0.026 0.101 0.012 0.056
48 0.261 0.365 0.141 0.315 0.115 0.271 0.013 0.093 0.007 0.052

LML-Spline 12 0.288 0.485 0.243 0.322 0.069 0.235 0.089 0.219 0.021 0.084
24 0.197 0.423 0.139 0.332 0.089 0.191 0.008 0.148 0.014 0.053
36 0.263 0.456 0.201 0.463 0.126 0.231 0.022 0.128 0.006 0.049
48 0.309 0.445 0.282 0.312 0.044 0.188 0.008 0.105 0.006 0.046

Table 2: MSE for standard deviations of random coefficients in DGP 1 (bimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

MXL-N Pref. 6 0.463 0.693 0.420 0.629 0.360 0.516 0.322 0.401 0.283 0.359
MXL-N WTP 6 0.370 0.542 0.319 0.516 0.293 0.475 0.286 0.376 0.246 0.346
LML-Poly 12 0.467 0.639 0.481 0.672 0.361 0.591 0.342 0.487 0.284 0.384

24 0.484 0.628 0.341 0.551 0.351 0.487 0.265 0.329 0.245 0.297
36 0.449 0.765 0.419 0.714 0.305 0.614 0.261 0.317 0.220 0.278
48 0.411 0.645 0.329 0.561 0.267 0.495 0.246 0.293 0.214 0.267

LML-Step 12 0.392 0.597 0.421 0.554 0.341 0.579 0.363 0.469 0.252 0.373
24 0.401 0.644 0.492 0.638 0.362 0.516 0.295 0.360 0.223 0.346
36 0.424 0.553 0.425 0.505 0.330 0.440 0.255 0.333 0.222 0.289
48 0.408 0.556 0.367 0.551 0.299 0.489 0.245 0.313 0.207 0.275

LML-Spline 12 0.421 0.591 0.775 0.649 0.312 0.421 0.305 0.449 0.282 0.378
24 0.424 0.651 0.324 0.560 0.269 0.413 0.279 0.352 0.241 0.263
36 0.467 0.718 0.449 0.624 0.334 0.582 0.262 0.342 0.232 0.288
48 0.488 0.681 0.489 0.665 0.426 0.412 0.253 0.345 0.218 0.248
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Table 3: MSE for means of random coefficients in DGP 1 (bimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2

MXL-N Pref. 6 0.185 0.277 0.168 0.252 0.144 0.207 0.129 0.161 0.113 0.144
MXL-N WTP 6 0.148 0.217 0.128 0.207 0.117 0.190 0.115 0.151 0.099 0.139
LML-Poly 12 0.187 0.256 0.193 0.269 0.145 0.237 0.137 0.195 0.114 0.154

24 0.194 0.251 0.137 0.221 0.141 0.195 0.106 0.132 0.098 0.119
36 0.180 0.306 0.168 0.286 0.122 0.246 0.105 0.127 0.088 0.111
48 0.165 0.258 0.132 0.225 0.107 0.198 0.099 0.117 0.086 0.107

LML-Step 12 0.157 0.239 0.169 0.222 0.137 0.232 0.145 0.188 0.101 0.149
24 0.161 0.258 0.197 0.255 0.145 0.207 0.118 0.144 0.085 0.139
36 0.170 0.221 0.170 0.202 0.132 0.176 0.102 0.133 0.089 0.116
48 0.163 0.223 0.147 0.221 0.120 0.196 0.098 0.125 0.083 0.110

LML-Spline 12 0.169 0.237 0.210 0.260 0.125 0.169 0.122 0.180 0.113 0.151
24 0.170 0.261 0.130 0.224 0.108 0.165 0.112 0.141 0.097 0.105
36 0.187 0.287 0.180 0.250 0.134 0.233 0.105 0.137 0.093 0.115
48 0.195 0.273 0.196 0.266 0.171 0.165 0.101 0.138 0.087 0.099

Table 4: MSE for standard deviations of random coefficients in DGP 1 (bimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

MXL-N Pref. 6 0.204 0.305 0.185 0.277 0.158 0.228 0.142 0.177 0.124 0.158
MXL-N WTP 6 0.163 0.239 0.141 0.228 0.129 0.209 0.127 0.166 0.109 0.153
LML-Poly 12 0.206 0.282 0.212 0.296 0.160 0.261 0.151 0.215 0.125 0.169

24 0.213 0.276 0.151 0.243 0.155 0.215 0.117 0.145 0.108 0.131
36 0.198 0.337 0.185 0.315 0.134 0.271 0.116 0.140 0.097 0.122
48 0.182 0.284 0.145 0.248 0.118 0.218 0.109 0.129 0.095 0.118

LML-Step 12 0.173 0.263 0.186 0.244 0.151 0.255 0.160 0.207 0.111 0.164
24 0.177 0.284 0.217 0.281 0.160 0.228 0.130 0.158 0.094 0.153
36 0.187 0.243 0.187 0.222 0.145 0.194 0.112 0.146 0.098 0.128
48 0.179 0.245 0.162 0.243 0.132 0.216 0.108 0.138 0.091 0.121

LML-Spline 12 0.186 0.261 0.231 0.286 0.138 0.186 0.134 0.198 0.124 0.166
24 0.187 0.287 0.143 0.246 0.119 0.182 0.123 0.155 0.107 0.116
36 0.206 0.316 0.198 0.275 0.147 0.256 0.116 0.151 0.102 0.127
48 0.215 0.300 0.216 0.293 0.188 0.182 0.111 0.152 0.096 0.109
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Table 5: MSE for means of random coefficients in DGP 2 (trimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2

MXL-N Pref. 6 0.248 0.392 0.211 0.345 0.128 0.269 0.097 0.180 0.050 0.122
MXL-N WTP 6 0.149 0.271 0.086 0.253 0.074 0.187 0.068 0.115 0.008 0.094
LML-Poly 12 0.202 0.386 0.119 0.280 0.053 0.265 0.038 0.221 0.013 0.123

24 0.241 0.364 0.094 0.323 0.058 0.203 0.020 0.113 0.008 0.069
36 0.325 0.499 0.194 0.341 0.032 0.271 0.017 0.086 0.004 0.053
48 0.248 0.356 0.191 0.314 0.033 0.206 0.011 0.087 0.005 0.049

LML-Step 12 0.221 0.366 0.213 0.281 0.035 0.208 0.049 0.223 0.021 0.144
24 0.188 0.365 0.134 0.346 0.065 0.181 0.035 0.119 0.013 0.094
36 0.191 0.293 0.157 0.274 0.085 0.203 0.023 0.091 0.011 0.050
48 0.235 0.329 0.127 0.284 0.104 0.244 0.012 0.084 0.006 0.047

LML-Spline 12 0.259 0.437 0.219 0.290 0.062 0.212 0.080 0.197 0.019 0.076
24 0.177 0.381 0.125 0.299 0.080 0.172 0.057 0.133 0.013 0.048
36 0.237 0.410 0.181 0.417 0.113 0.208 0.020 0.115 0.005 0.044
48 0.278 0.401 0.254 0.281 0.040 0.169 0.007 0.095 0.005 0.041

Table 6: MSE for standard deviations of random coefficients in DGP 2 (trimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

MXL-N Pref. 6 0.426 0.633 0.392 0.581 0.341 0.477 0.352 0.368 0.304 0.342
MXL-N WTP 6 0.371 0.500 0.301 0.479 0.281 0.443 0.344 0.398 0.294 0.328
LML-Poly 12 0.432 0.592 0.447 0.614 0.340 0.549 0.312 0.469 0.283 0.356

24 0.452 0.577 0.319 0.510 0.329 0.447 0.271 0.367 0.262 0.323
36 0.413 0.701 0.388 0.654 0.288 0.566 0.216 0.369 0.262 0.257
48 0.383 0.596 0.307 0.522 0.255 0.462 0.230 0.304 0.244 0.250

LML-Step 12 0.368 0.551 0.389 0.511 0.318 0.538 0.365 0.424 0.256 0.306
24 0.373 0.592 0.457 0.584 0.337 0.482 0.271 0.357 0.233 0.290
36 0.394 0.507 0.392 0.470 0.315 0.410 0.272 0.374 0.223 0.268
48 0.382 0.515 0.342 0.506 0.282 0.458 0.272 0.332 0.192 0.262

LML-Spline 12 0.395 0.542 0.707 0.600 0.293 0.391 0.339 0.452 0.289 0.281
24 0.394 0.597 0.306 0.517 0.252 0.383 0.290 0.399 0.280 0.271
36 0.432 0.659 0.418 0.576 0.312 0.540 0.315 0.383 0.285 0.262
48 0.453 0.626 0.456 0.610 0.401 0.385 0.280 0.326 0.247 0.257
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Table 7: MSE for means of random coefficients in DGP 2 (trimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2 ω1 ω2

MXL-N Pref. 6 0.167 0.249 0.151 0.227 0.130 0.186 0.116 0.145 0.102 0.130
MXL-N WTP 6 0.133 0.195 0.115 0.186 0.105 0.171 0.104 0.136 0.089 0.125
LML-Poly 12 0.168 0.230 0.174 0.242 0.131 0.213 0.123 0.176 0.103 0.139

24 0.175 0.226 0.123 0.199 0.127 0.176 0.095 0.119 0.088 0.107
36 0.162 0.275 0.151 0.257 0.110 0.221 0.095 0.114 0.079 0.100
48 0.149 0.232 0.119 0.203 0.096 0.178 0.089 0.105 0.077 0.096

LML-Step 12 0.141 0.215 0.152 0.200 0.123 0.209 0.131 0.169 0.091 0.134
24 0.145 0.232 0.177 0.230 0.131 0.186 0.106 0.130 0.077 0.125
36 0.153 0.199 0.153 0.182 0.119 0.158 0.092 0.120 0.080 0.104
48 0.147 0.201 0.132 0.199 0.108 0.176 0.088 0.113 0.075 0.099

LML-Spline 12 0.152 0.213 0.189 0.234 0.113 0.152 0.110 0.162 0.102 0.136
24 0.153 0.235 0.117 0.202 0.097 0.149 0.101 0.127 0.087 0.095
36 0.168 0.258 0.162 0.225 0.121 0.210 0.095 0.123 0.084 0.104
48 0.176 0.246 0.176 0.239 0.154 0.149 0.091 0.124 0.078 0.089

Table 8: MSE for standard deviations of random coefficients in DGP 2 (trimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

MXL-N Pref. 6 0.184 0.275 0.167 0.249 0.142 0.205 0.128 0.159 0.112 0.142
MXL-N WTP 6 0.147 0.215 0.127 0.205 0.116 0.188 0.114 0.149 0.098 0.138
LML-Poly 12 0.185 0.254 0.191 0.266 0.144 0.235 0.136 0.194 0.113 0.152

24 0.192 0.248 0.136 0.219 0.140 0.194 0.105 0.131 0.097 0.118
36 0.178 0.303 0.167 0.284 0.121 0.244 0.104 0.126 0.087 0.110
48 0.164 0.256 0.131 0.223 0.106 0.196 0.098 0.116 0.086 0.106

LML-Step 12 0.156 0.237 0.167 0.220 0.136 0.230 0.144 0.186 0.100 0.148
24 0.159 0.256 0.195 0.253 0.144 0.205 0.117 0.142 0.085 0.138
36 0.168 0.219 0.168 0.200 0.131 0.175 0.101 0.131 0.088 0.115
48 0.161 0.221 0.146 0.219 0.119 0.194 0.097 0.124 0.082 0.109

LML-Spline 12 0.167 0.235 0.208 0.257 0.124 0.167 0.121 0.178 0.112 0.149
24 0.168 0.258 0.129 0.221 0.107 0.164 0.111 0.140 0.096 0.104
36 0.185 0.284 0.178 0.248 0.132 0.230 0.104 0.136 0.092 0.114
48 0.194 0.270 0.194 0.264 0.169 0.164 0.100 0.137 0.086 0.098
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Table 9: Means and st. dev. of modal estimates of ω1
n in DGP 1 (bimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2

Real - 0.55 1.26 0.55 1.26 0.55 1.26 0.55 1.26 0.55 1.26
MXL−N Pref. 6 0.89 − 0.84 − 0.75 − 0.86 − 0.80 −

(0.11) − (0.14) − (0.10) − (0.15) − (0.16) −
MXL−N WTP 6 0.99 − 1.02 − 1.11 − 0.94 − 0.84 −

(0.14) − (0.18) − (0.19) − (0.21) − (0.17) −
LML-Poly 12 0.68 2.06 0.71 1.99 0.74 1.77 0.65 1.56 0.42 1.36

(0.07) (0.24) (0.06) (0.21) (0.08) (0.16) (0.05) (0.15) (0.03) (0.12)
24 0.71 2.11 0.68 2.08 0.74 1.63 0.63 1.44 0.60 1.34

(0.07) (0.31) (0.06) (0.22) (0.06) (0.15) (0.06) (0.20) (0.03) (0.10)
36 0.69 2.07 0.61 1.99 0.61 1.69 0.47 1.49 0.55 1.25

(0.05) (0.20) (0.06) (0.19) (0.04) (0.18) (0.04) (0.17) (0.03) (0.11)
48 0.74 2.08 0.66 2.02 0.62 1.66 0.49 1.45 0.52 1.22

(0.06) (0.22) (0.05) (0.21) (0.07) (0.14) (0.04) (0.14) (0.02) (0.09)
LML-Step 12 0.77 2.05 0.74 2.03 0.75 1.80 0.67 1.45 0.44 1.35

(0.07) (0.22) (0.06) (0.21) (0.09) (0.19) (0.05) (0.18) (0.05) (0.14)
24 0.79 2.09 0.72 2.05 0.71 1.67 0.62 1.40 0.49 1.39

(0.07) (0.26) (0.05) (0.27) (0.08) (0.16) (0.03) (0.16) (0.03) (0.11)
36 0.76 2.01 0.61 1.92 0.61 1.50 0.49 1.37 0.53 1.22

(0.07) (0.25) (0.09) (0.21) (0.07) (0.18) (0.04) (0.18) (0.04) (0.09)
48 0.71 2.06 0.64 1.93 0.60 1.53 0.48 1.32 0.54 1.29

(0.06) (0.19) (0.06) (0.22) (0.06) (0.16) (0.06) (0.14) (0.03) (0.08)
LML-Spline 12 0.78 2.13 0.63 2.10 0.66 1.52 0.68 1.44 0.53 1.32

(0.09) (0.26) (0.07) (0.20) (0.08) (0.21) (0.06) (0.18) (0.05) (0.11)
24 0.76 2.19 0.65 2.06 0.72 1.56 0.67 1.39 0.54 1.31

(0.08) (0.21) (0.08) (0.23) (0.08) (0.20) (0.06) (0.19) (0.05) (0.12)
36 0.76 2.13 0.67 2.08 0.65 1.49 0.48 1.34 0.58 1.24

(0.07) (0.32) (0.08) (0.24) (0.08) (0.19) (0.06) (0.20) (0.05) (0.08)
48 0.75 2.18 0.71 2.08 0.62 1.44 0.46 1.31 0.53 1.21

(0.07) (0.24) (0.05) (0.21) (0.08) (0.19) (0.06) (0.17) (0.05) (0.08)
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Table 10: Means and st. dev. of modal estimates of ω1
n in DGP 1 (bimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2

Real - 0.55 1.26 0.55 1.26 0.55 1.26 0.55 1.26 0.55 1.26
MXL−N Pref. 6 0.88 − 0.80 − 0.77 − 0.74 − 0.71 −

(0.14) − (0.12) − (0.12) − (0.18) − (0.15) −
MXL−N WTP 6 0.95 − 0.93 − 0.91 0.94 − 0.88 −

(0.20) − (0.15) − (0.12) − (0.18) − (0.14) −
LML-Poly 12 0.71 2.14 0.74 2.07 0.67 1.65 0.67 1.48 0.64 1.43

(0.06) (0.22) (0.06) (0.15) (0.07) (0.18) (0.05) (0.14) (0.04) (0.11)
24 0.74 2.19 0.71 2.16 0.66 1.51 0.65 1.47 0.62 1.41

(0.06) (0.21) (0.07) (0.19) (0.05) (0.18) (0.06) (0.17) (0.06) (0.12)
36 0.72 2.15 0.73 2.07 0.73 1.57 0.69 1.42 0.56 1.32

(0.07) (0.19) (0.05) (0.17) (0.06) (0.17) (0.04) (0.15) (0.05) (0.09)
48 0.77 2.16 0.69 2.10 0.64 1.54 0.61 1.39 0.54 1.29

(0.05) (0.18) (0.06) (0.16) (0.05) (0.15) (0.04) (0.13) (0.04) (0.08)
LML-Step 12 0.70 2.13 0.77 2.11 0.77 1.78 0.69 1.42 0.66 1.42

(0.11) (0.22) (0.14) (0.22) (0.12) (0.19) (0.09) (0.12) (0.05) (0.12)
24 0.72 2.17 0.75 2.13 0.73 1.75 0.64 1.37 0.51 1.37

(0.10) (0.24) (0.09) (0.22) (0.08) (0.15) (0.09) (0.11) (0.06) (0.10)
36 0.69 2.08 0.73 2.00 0.63 1.78 0.61 1.39 0.55 1.29

(0.12) (0.22) (0.09) (0.21) (0.08) (0.14) (0.08) (0.12) (0.05) (0.09)
48 0.73 2.14 0.67 2.01 0.64 1.71 0.60 1.36 0.54 1.26

(0.09) (0.19) (0.06) (0.22) (0.07) (0.15) (0.06) (0.11) (0.04) (0.08)
LML-Spline 12 0.71 2.22 0.66 2.18 0.68 1.80 0.60 1.44 0.63 1.44

(0.09) (0.22) (0.08) (0.20) (0.08) (0.21) (0.05) (0.20) (0.05) (0.15)
24 0.69 2.28 0.77 2.14 0.74 1.84 0.69 1.48 0.59 1.48

(0.08) (0.24) (0.09) (0.19) (0.08) (0.20) (0.06) (0.18) (0.06) (0.11)
36 0.69 2.22 0.72 2.16 0.67 1.70 0.60 1.33 0.57 1.31

(0.06) (0.29) (0.10) (0.24) (0.09) (0.17) (0.06) (0.21) (0.05) (0.08)
48 0.62 2.27 0.74 2.16 0.64 1.75 0.58 1.38 0.55 1.28

(0.05) (0.16) (0.07) (0.21) (0.06) (0.15) (0.04) (0.10) (0.03) (0.07)
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Table 11: Means and st. dev. of modal estimates of ω2
n in DGP 1 (bimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2

Real - -1.78 1.69 -1.78 1.69 -1.78 1.69 -1.78 1.69 -1.78 1.69
MXL−N Pref. 6 0.78 − 0.76 − 0.65 − 0.56 − 0.46 −

(0.16) − (0.15) − (0.11) − (0.12) − (0.09) −
MXL−N WTP 6 0.55 − 0.43 − 0.38 0.29 − 0.18 −

(0.18) − (0.11) − (0.10) − (0.08) − (0.04) −
LML-Poly 12 -1.14 1.22 -1.19 1.18 -1.18 1.41 -1.22 1.43 -1.23 1.50

(0.16) (0.25) (0.14) (0.22) (0.14) (0.16) (0.15) (0.19) (0.13) (0.15)
24 -1.19 1.35 -1.20 1.26 -1.34 1.31 -1.37 1.37 -1.49 1.40

(0.18) (0.24) (0.12) (0.21) (0.12) (0.17) (0.12) (0.16) (0.12) (0.12)
36 -1.29 1.42 -1.28 1.45 -1.40 1.44 -1.41 1.54 -1.51 1.55

(0.11) (0.20) (0.12) (0.18) (0.11) (0.12) (0.17) (0.16) (0.15) (0.16)
48 -1.38 1.43 -1.45 1.51 -1.53 1.52 -1.49 1.54 -1.64 1.62

(0.11) (0.14) (0.11) (0.14) (0.09) (0.11) (0.08) (0.11) (0.08) (0.07)
LML-Step 12 -1.20 1.49 -1.16 1.46 -1.26 1.12 -1.33 1.15 -1.43 1.20

(0.14) (0.25) (0.15) (0.20) (0.14) (0.19) (0.15) (0.15) (0.14) (0.16)
24 -1.37 1.49 -1.43 1.57 -1.37 1.34 -1.46 1.44 -1.50 1.42

(0.16) (0.21) (0.13) (0.13) (0.17) (0.18) (0.14) (0.12) (0.13) (0.14)
36 -1.40 1.36 -1.46 1.40 -1.50 1.45 -1.59 1.46 -1.67 1.51

(0.14) (0.17) (0.12) (0.12) (0.16) (0.13) (0.17) (0.09) (0.12) (0.11)
48 -1.26 1.11 -1.32 1.14 -1.35 1.49 -1.42 1.61 -1.66 1.73

(0.15) (0.15) (0.16) (0.15) (0.13) (0.12) (0.09) (0.09) (0.08) (0.06)
LML-Spline 12 -1.28 1.19 -1.23 1.12 -1.39 1.21 -1.42 1.33 -1.46 1.41

(0.15) (0.22) (0.17) (0.18) (0.15) (0.16) (0.15) (0.19) (0.12) (0.14)
24 -1.28 1.19 -1.23 1.17 -1.51 1.22 -1.60 1.38 -1.54 1.40

(0.15) (0.18) (0.15) (0.21) (0.12) (0.16) (0.14) (0.16) (0.13) (0.16)
36 -1.36 1.03 -1.42 1.16 -1.33 1.55 -1.40 1.59 -1.54 1.66

(0.16) (0.20) (0.18) (0.19) (0.1) (0.16) (0.12) (0.11) (0.10) (0.12)
48 -1.32 1.12 -1.31 1.17 -1.43 1.59 -1.55 1.53 -1.66 1.70

(0.16) (0.16) (0.14) (0.15) (0.09) (0.10) (0.08) (0.12) (0.07) (0.09)
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Table 12: Means and st. dev. of modal estimates of ω2
n in DGP 1 (bimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2 Max1 Max2

Real − −1.78 1.69 −1.78 1.69 −1.78 1.69 −1.78 1.69 −1.78 1.69
MXL−N Pref. 6 0.22 − 0.34 − 0.27 − 0.49 − 0.45 −

(0.04) − (0.05) − (0.02) − (0.08) − (0.05) −
MXL−N WTP 6 0.12 − 0.12 − 0.17 0.27 − 0.08 −

(0.03) − (0.05) − (0.04) − (0.06) − (0.03) −
LML-Poly 12 −1.19 1.27 −1.24 1.23 −1.23 1.47 −1.27 1.49 −1.28 1.56

(0.19) (0.25) (0.16) (0.20) (0.15) (0.18) (0.16) (0.15) (0.12) (0.14)
24 −1.24 1.40 −1.25 1.31 −1.39 1.36 −1.42 1.42 −1.55 1.46

(0.16) (0.22) (0.11) (0.18) (0.14) (0.15) (0.14) (0.14) (0.11) (0.12)
36 −1.34 1.48 −1.33 1.51 −1.46 1.50 −1.47 1.60 −1.57 1.61

(0.11) (0.21) (0.14) (0.15) (0.12) (0.13) (0.15) (0.13) (0.10) (0.13)
48 −1.44 1.49 −1.51 1.57 −1.59 1.58 −1.55 1.60 −1.71 1.68

(0.13) (0.12) (0.10) (0.13) (0.09) (0.10) (0.09) (0.10) (0.06) (0.08)
LML-Step 12 −1.25 1.55 −1.21 1.52 −1.31 1.16 −1.38 1.20 −1.49 1.25

(0.20) (0.25) (0.13) (0.12) (0.14) (0.19) (0.14) (0.12) (0.14) (0.16)
24 −1.42 1.55 −1.49 1.63 −1.42 1.39 −1.52 1.50 −1.56 1.48

(0.11) (0.21) (0.13) (0.13) (0.17) (0.18) (0.14) (0.12) (0.12) (0.16)
36 −1.46 1.41 −1.52 1.46 −1.56 1.51 −1.65 1.52 −1.74 1.57

(0.13) (0.17) (0.12) (0.12) (0.18) (0.13) (0.17) (0.09) (0.12) (0.14)
48 −1.31 1.15 −1.37 1.19 −1.40 1.55 −1.48 1.67 −1.73 1.80

(0.12) (0.13) (0.15) (0.15) (0.11) (0.10) (0.09) (0.11) (0.06) (0.10)
LML-Spline 12 −1.33 1.24 −1.28 1.16 −1.45 1.26 −1.48 1.38 −1.52 1.47

(0.18) (0.22) (0.19) (0.18) (0.15) (0.16) (0.15) (0.19) (0.12) (0.14)
24 −1.37 1.28 −1.24 1.22 −1.57 1.27 −1.66 1.44 −1.60 1.46

(0.15) (0.18) (0.15) (0.18) (0.12) (0.16) (0.14) (0.16) (0.13) (0.16)
36 −1.41 1.07 −1.48 1.21 −1.38 1.61 −1.46 1.65 −1.60 1.73

(0.16) (0.17) (0.11) (0.19) (0.1) (0.19) (0.12) (0.11) (0.10) (0.12)
48 −1.37 1.16 −1.36 1.22 −1.49 1.65 −1.61 1.59 −1.73 1.77

(0.14) (0.11) (0.12) (0.11) (0.09) (0.09) (0.07) (0.12) (0.07) (0.06)
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Table 13: Means and st. dev. of modal estimates of ω1
n in DGP 2 (trimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3

Real −1.12 1.77 3.61 −1.12 1.77 3.61 −1.12 1.77 3.61 −1.12 1.77 3.61 −1.12 1.77 3.61
MXL−N Pref. 6 1.13 − − 1.34 − − 1.27 − − 1.19 − − 1.25 − −

(0.26) (0.29) (0.28) (0.23) (0.22)
MXL−N WTP 6 1.15 − − 1.13 − − 1.18 − − 1.27 − − 1.38 − −

(0.26) (0.19) (0.27) (0.28) (0.20)
LML-Poly 12 −1.89 3.10 − −1.80 3.16 − −1.76 3.23 − −1.72 3.29 − −1.38 3.36 −

(0.21) (0.35) (0.22) (0.18) (0.19) (0.29) (0.15) (0.26) (0.13) (0.25)
24 −1.91 3.19 − −1.81 3.25 − −1.78 3.32 − −1.74 2.22 4.04 −1.39 2.00 3.86

(0.22) (0.37) (0.24) (0.19) (0.22) (0.25) (0.14) (0.28) (0.39) (0.15) (0.25) (0.32)
36 −1.86 3.32 − −1.77 2.24 4.37 −1.73 2.20 4.28 −1.70 2.15 4.20 −1.36 1.94 3.72

(0.19) (0.32) (0.21) (0.25) (0.41) (0.24) (0.24) (0.38) (0.13) (0.21) (0.35) (0.16) (0.22) (0.34)
48 −1.77 2.33 4.39 −1.68 2.21 4.17 −1.79 2.17 4.09 −1.61 2.13 4.01 −1.29 1.91 3.68

(0.18) (0.28) (0.46) (0.19) (0.26) (0.38) (0.22) (0.21) (0.36) (0.10) (0.20) (0.33) (0.12) (0.18) (0.29)
LML-Step 12 −1.98 3.26 − −1.88 3.32 − −1.84 3.39 − −1.81 3.45 − −1.45 3.52 −

(0.24) (0.31) (0.21) (0.22) (0.22) (0.19) (0.12) (0.29) (0.12) (0.17)
24 −1.90 3.35 − −1.80 3.42 − −1.76 3.48 − −1.73 2.19 4.15 −1.38 1.97 3.82

(0.23) (0.27) (0.20) (0.22) (0.23) (0.18) (0.15) (0.31) (0.46) (0.13) (0.16) (0.33)
36 −1.83 3.49 − −1.74 2.26 4.20 −1.70 2.22 4.37 −1.67 2.17 4.03 −1.34 1.95 3.71

(0.25) (0.26) (0.24) (0.25) (0.42) (0.27) (0.16) (0.39) (0.14) (0.26) (0.44) (0.15) (0.14) (0.36)
48 −1.76 2.42 4.46 −1.67 2.30 4.24 −1.77 2.25 4.24 −1.61 2.21 4.07 −1.28 1.89 3.68

(0.21) (0.22) (0.51) (0.21) (0.23) (0.40) (0.19) (0.20) (0.37) (0.14) (0.20) (0.39) (0.09) (0.15) (0.34)
LML-Spline 12 −2.01 3.18 − −1.91 3.24 − −1.87 3.31 − −1.83 3.37 − −1.47 3.44 −

(0.14) (0.27) (0.21) (0.19) (0.22) (0.21) (0.19) (0.15) (0.16) (0.25)
24 −1.89 3.27 − −1.90 3.34 − −1.76 3.40 − −1.75 2.15 4.11 −1.38 2.01 3.79

(0.15) (0.29) (0.19) (0.24) (0.22) (0.23) (0.18) (0.25) (0.49) (0.14) (0.29) (0.40)
36 −1.89 3.40 − −1.80 3.19 − −1.79 3.15 − −1.72 2.11 4.09 −1.35 1.93 3.76

(0.12) (0.32) (0.24) (0.15) (0.22) (0.24) (0.17) (0.26) (0.42) (0.16) (0.28) (0.42)
48 −1.83 2.39 4.40 −1.74 2.27 4.18 −1.70 2.23 4.10 −1.71 2.18 4.01 −1.34 1.92 3.69

(0.16) (0.24) (0.44) (0.20) (0.13) (0.41) (0.22) (0.17) (0.22) (0.11) (0.23) (0.38) (0.11) (0.24) (0.36)
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Table 14: Means and st. dev. of modal estimates of ω1
n in DGP 2 (trimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3

Real −1.12 1.77 3.61 −1.12 1.77 3.61 −1.12 1.77 3.61 −1.12 1.77 3.61 −1.12 1.77 3.61
MXL−N Pref. 6 1.24 − − 1.28 − − 1.35 − − 1.38 − − 1.43 − −

(0.22) (0.23) (0.25) (0.23) (0.28)
MXL−N WTP 6 1.26 − − 1.33 − − 1.38 − − 1.57 − − 1.49 − −

(0.27) (0.30) (0.25) (0.26) (0.22)
LML-Poly 12 −1.80 2.95 − −1.71 3.00 − −1.67 3.06 − −1.64 3.13 − −1.31 3.19 −

(0.23) (0.33) (0.21) (0.19) (0.20) (0.31) (0.13) (0.26) (0.14) (0.22)
24 −1.81 3.03 − −1.72 3.09 − −1.69 3.15 4.18 −1.66 2.11 3.84 −1.32 1.90 3.67

(0.25) (0.35) (0.24) (0.21) (0.23) (0.23) (0.41) (0.12) (0.28) (0.37) (0.13) (0.26) (0.35)
36 −1.77 3.15 − −1.68 2.13 4.15 −1.65 2.09 4.07 −1.61 2.05 3.99 −1.29 1.84 3.53

(0.20) (0.30) (0.21) (0.24) (0.42) (0.22) (0.22) (0.36) (0.12) (0.21) (0.36) (0.14) (0.24) (0.33)
48 −1.68 2.21 4.17 −1.60 2.10 3.96 −1.57 2.06 3.88 −1.53 2.02 3.81 −1.23 1.82 3.50

(0.16) (0.22) (0.44) (0.20) (0.24) (0.37) (0.21) (0.19) (0.38) (0.12) (0.20) (0.32) (0.11) (0.15) (0.28)
LML-Step 12 −1.88 3.09 − −1.79 3.15 − −1.75 3.22 − −1.72 3.28 − −1.37 3.35 −

(0.25) (0.30) (0.20) (0.23) (0.25) (0.19) (0.11) (0.23) (0.13) (0.17)
24 −1.80 3.18 − −1.71 3.25 − −1.68 3.31 4.21 −1.64 2.08 3.94 −1.31 1.87 3.63

(0.24) (0.24) (0.22) (0.24) (0.26) (0.17) (0.43) (0.15) (0.32) (0.48) (0.13) (0.14) (0.37)
36 −1.74 3.31 − −1.65 2.15 3.99 −1.62 2.10 4.16 −1.59 2.06 3.91 −1.27 1.86 3.58

(0.22) (0.25) (0.25) (0.22) (0.45) (0.23) (0.18) (0.37) (0.14) (0.22) (0.43) (0.14) (0.14) (0.38)
48 −1.67 2.30 4.24 −1.68 2.18 4.03 −1.66 2.14 4.08 −1.53 2.02 3.87 −1.22 1.81 3.51

(0.24) (0.24) (0.53) (0.22) (0.25) (0.42) (0.21) (0.22) (0.34) (0.17) (0.19) (0.40) (0.10) (0.16) (0.33)
LML-Spline 12 −1.91 3.02 − −1.81 3.08 − −1.78 3.14 − −1.74 3.20 − −1.39 3.27 −

(0.16) (0.27) (0.21) (0.19) (0.22) (0.21) (0.19) (0.15) (0.16) (0.25)
24 −1.80 3.11 − −1.71 3.17 − −1.67 3.23 4.32 −1.64 2.05 3.91 −1.31 1.84 3.60

(0.15) (0.29) (0.19) (0.24) (0.22) (0.23) (0.46) (0.18) (0.25) (0.49) (0.14) (0.29) (0.40)
36 −1.88 3.23 − −1.73 2.08 4.12 −1.67 2.04 4.04 −1.66 2.00 3.88 −1.29 1.83 3.57

(0.15) (0.32) (0.24) (0.15) (0.48) (0.22) (0.24) (0.44) (0.17) (0.26) (0.42) (0.16) (0.28) (0.42)
48 −1.74 2.27 4.18 −1.65 2.16 3.97 −1.62 2.11 3.96 −1.59 1.98 3.81 −1.27 1.79 3.51

(0.15) (0.24) (0.44) (0.20) (0.13) (0.41) (0.22) (0.17) (0.22) (0.11) (0.23) (0.38) (0.11) (0.24) (0.36)
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Table 15: Means and st. dev. of modal estimates of ω2
n in DGP 2 (trimodal, T = 4)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3

Real 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82
MXL−N Pref. 6 3.92 − − 4.01 − − 4.11 − − 4.05 − − 4.01 − −

(0.47) (0.51) (0.48) (0.46) (0.42)
MXL−N WTP 6 4.10 − − 4.04 − − 3.99 − − 4.08 − − 4.12 − −

(0.58) (0.49) (0.47) (0.39) (0.36)
LML-Poly 12 0.26 3.24 − 0.41 3.21 − 0.74 3.46 − 0.80 3.53 − 0.87 3.60 −

(0.04) (0.41) (0.05) (0.28) (0.13) (0.29) (0.08) (0.30) (0.12) (0.29)
24 0.25 3.21 − 0.24 3.60 − 0.29 3.68 − 0.31 3.28 5.25 0.34 3.38 5.34

(0.04) (0.36) (0.06) (0.31) (0.09) (0.32) (0.05) (0.29) (0.48) (0.03) (0.28) (0.45)
36 0.29 3.29 − 0.50 3.08 5.14 0.67 3.31 5.21 0.72 3.38 5.31 0.79 3.45 5.43

(0.03) (0.37) (0.11) (0.30) (0.55) (0.16) (0.26) (0.51) (0.11) (0.28) (0.49) (0.10) (0.28) (0.42)
48 0.68 3.01 5.15 0.79 3.32 5.21 0.87 3.34 5.27 0.94 3.41 5.34 1.02 3.50 5.55

(0.13) (0.35) (0.53) (0.12) (0.29) (0.48) (0.19) (0.28) (0.46) (0.08) (0.25) (0.44) (0.08) (0.25) (0.39)
LML-Step 12 0.33 3.31 − 0.38 3.50 − 0.48 3.63 − 0.51 3.70 − 0.56 3.75 −

(0.05) (0.40) (0.06) (0.30) (0.07) (0.32) (0.06) (0.26) (0.08) (0.26)
24 0.15 3.32 − 0.17 3.28 − 0.17 3.24 − 0.19 3.25 5.16 0.21 3.27 5.29

(0.02) (0.38) (0.03) (0.31) (0.01) (0.29) (0.02) (0.25) (0.46) (0.05) (0.30) (0.44)
36 0.22 3.38 − 0.43 3.12 5.18 0.69 3.19 5.20 0.75 3.30 5.22 0.81 3.37 5.25

(0.02) (0.35) (0.08) (0.28) (0.43) (0.10) (0.28) (0.47) (0.12) (0.27) (0.42) (0.10) (0.28) (0.45)
48 0.78 3.04 5.22 0.82 3.22 5.25 0.85 3.29 5.23 0.92 3.36 5.31 1.00 3.45 5.49

(0.10) (0.32) (0.49) (0.11) (0.29) (0.45) (0.12) (0.25) (0.41) (0.15) (0.24) (0.40) (0.13) (0.22) (0.38)
LML-Spline 12 0.40 3.36 − 0.61 3.47 − 0.91 3.69 − 0.98 3.77 − 1.07 3.86 −

(0.06) (0.34) (0.25) (0.20) (0.24) (0.35) (0.16) (0.21) (0.13) (0.31)
24 0.09 3.41 − 0.17 3.61 − 0.19 3.36 − 0.21 3.21 5.13 0.23 3.23 5.29

(0.01) (0.41) (0.26) (0.23) (0.03) (0.32) (0.18) (0.22) (0.27) (0.17) (0.24) (0.25)
36 0.25 3.35 − 0.38 3.43 − 0.43 3.53 − 0.46 3.26 5.23 0.50 3.31 5.36

(0.04) (0.39) (0.20) (0.21) (0.06) (0.31) (0.15) (0.25) (0.28) (0.16) (0.28) (0.27)
48 0.85 3.02 5.18 0.75 3.25 5.23 0.93 3.28 5.31 1.00 3.34 5.33 1.09 3.44 5.60

(0.21) (0.33) (0.35) (0.22) (0.18) (0.35) (0.19) (0.29) (0.35) (0.15) (0.24) (0.23) (0.12) (0.24) (0.25)
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Table 16: Means and st. dev. of modal estimates of ω2
n in DGP 2 (trimodal, T = 8)

Model N = 70 N = 210 N = 490 N = 980 N = 1,960

k Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3 Max1 Max2 Max3

Real 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82 1.36 3.68 5.82
MXL−N Pref. 6 3.86 − − 3.97 − − 4.04 − − 4.08 − − 4.15 − −

(0.45) (0.46) (0.44) (0.43) (0.44)
MXL−N WTP 6 3.98 − − 3.95 − − 4.14 − − 4.12 − − 4.20 − −

(0.50) (0.48) (0.42) (0.47) (0.42)
LML-Poly 12 0.31 3.33 − 0.43 3.31 − 0.76 3.56 − 0.81 3.60 − 0.91 3.68 −

(0.06) (0.40) (0.05) (0.28) (0.13) (0.29) (0.08) (0.30) (0.14) (0.23)
24 0.28 3.30 − 0.25 3.71 − 0.30 3.81 − 0.32 3.39 5.31 0.35 3.40 5.35

(0.05) (0.35) (0.06) (0.31) (0.09) (0.32) (0.05) (0.26) (0.46) (0.09) (0.23) (0.44)
36 0.29 3.33 − 0.67 3.20 5.28 0.70 3.40 5.43 0.74 3.47 5.32 0.83 3.51 5.44

(0.05) (0.36) (0.11) (0.30) (0.55) (0.16) (0.26) (0.51) (0.11) (0.24) (0.52) (0.11) (0.25) (0.40)
48 0.71 3.12 5.16 0.84 3.45 5.40 0.90 3.39 5.36 0.95 3.51 5.52 1.07 3.55 5.66

(0.13) (0.35) (0.53) (0.12) (0.29) (0.48) (0.19) (0.28) (0.46) (0.09) (0.27) (0.45) (0.09) (0.24) (0.37)
LML-Step 12 0.38 3.43 − 0.39 3.50 − 0.49 3.71 − 0.52 3.79 − 0.58 3.94 −

(0.05) (0.38) (0.06) (0.30) (0.05) (0.32) (0.05) (0.26) (0.08) (0.25)
24 0.18 3.48 − 0.18 3.36 − 0.18 3.32 − 0.19 3.26 5.19 0.21 3.30 5.36

(0.04) (0.36) (0.07) (0.30) (0.06) (0.29) (0.04) (0.25) (0.46) (0.03) (0.30) (0.44)
36 0.29 3.53 − 0.66 3.21 5.27 0.71 3.31 5.45 0.78 3.39 5.29 0.82 3.49 5.43

(0.05) (0.35) (0.11) (0.26) (0.43) (0.12) (0.28) (0.45) (0.13) (0.27) (0.42) (0.10) (0.26) (0.45)
48 0.82 3.17 5.31 0.82 3.24 5.46 0.86 3.33 5.35 0.93 3.39 5.36 1.04 3.59 5.69

(0.12) (0.29) (0.49) (0.14) (0.26) (0.45) (0.14) (0.25) (0.40) (0.16) (0.24) (0.40) (0.13) (0.22) (0.38)
LML-Spline 12 0.41 3.46 − 0.62 3.48 − 0.94 3.70 − 1.01 3.89 − 1.08 4.05 −

(0.07) (0.40) (0.15) (0.24) (0.13) (0.32) (0.16) (0.26) (0.18) (0.34)
24 0.09 3.43 − 0.17 3.78 − 0.20 3.40 − 0.21 3.30 5.20 0.24 3.35 5.48

(0.03) (0.34) (0.04) (0.28) (0.09) (0.32) (0.05) (0.26) (0.25) (0.05) (0.27) (0.32)
36 0.34 3.51 − 0.71 3.31 5.38 0.44 3.32 5.40 0.47 3.27 5.45 0.52 3.41 5.46

(0.07) (0.33) (0.12) (0.26) (0.41) (0.10) (0.30) (0.38) (0.07) (0.26) (0.25) (0.14) (0.28) (0.35)
48 0.85 3.14 5.41 0.92 3.34 5.32 0.93 3.41 5.43 1.02 3.42 5.59 1.15 3.60 5.63

(0.14) (0.36) (0.35) (0.14) (0.28) (0.35) (0.12) (0.32) (0.35) (0.13) (0.28) (0.31) (0.16) (0.28) (0.30)
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Table 17: Information criteria for tap water models.

Model κ lnL ∗ AIC BIC

MXL-N Pref. 11 −2,932 5,821 5,823
MXL-N WTP 11 −2,908 5,794 5,771
LC 2 classes 23 −2,896 5,741 5,753
LC 3 classes 35 −2,877 5,724 5,745
LML-Poly 22 −2,818 5,614 5,637
LML-Poly 33 −2,774 5,526 5,549
LML-Poly 44 −2,732 5,442 5,465
LML-Poly 55 −2,718 5,414 5,437
LML-Step 22 −2,802 5,582 5,605
LML-Step 33 −2,758 5,494 5,517
LML-Step 44 −2,716 5,410 5,503
LML-Step 55 −2,702 5,382 5,505
LML-Spline 22 −2,786 5,550 5,573
LML-Spline 33 −2,742 5,462 5,485
LML-Spline 44 −2,700 5,378 5,401
LML-Spline 55 −2,686 5,350 5,412

30



C
.Franceschinis,R

.S
carpa,and

M
.Thiene

Flexible
taste

distributions
underasym

m
etry

and
m

ultim
odality

Table 18: Modal values of distributions of attributes’ coefficients (Empirical application)

Odor Taste Turbidity Stain

Model/Attribute κ Weekly Monthly Never Weekly Monthly Never Mild Medium Extra Present

MXL-N Pref. 11 1 1 1 1 1 1 1 1 1 1
MXL-N WTP 11 1 1 1 1 1 1 1 1 1 1
LML-Poly 22 2 2 2 1 2 1 1 2 1 2
LML-Poly 33 1 2 2 1 2 2 2 2 1 2
LML-Poly 44 2 3 2 2 3 2 3 2 3 2
LML-Poly 55 2 3 2 2 3 2 3 2 3 2
LML-Step 22 1 2 1 1 2 2 2 2 1 2
LML-Step 33 2 2 2 2 2 1 1 2 1 2
LML-Step 44 2 3 3 2 2 2 3 2 3 2
LML-Step 55 2 2 3 2 3 2 3 2 3 2
LML-Spline 22 2 2 1 1 2 1 1 2 1 2
LML-Spline 33 2 2 2 2 2 1 2 2 2 2
LML-Spline 44 2 3 2 2 2 2 3 2 3 2
LML-Spline 55 2 3 2 2 2 2 3 3 3 2
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