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Abstract 

 

We empirically question the commonly employed distributional assumption of normality of 

taste distribution in mixed logit models with continuous random parameters. We use a WTP-

space random utility discrete choice model with flexible distributions (Train 2016) on data 

from two choice experiments regarding beef with nested set of quality attributes. We 

specifically address distributional features such as asymmetry, multi-modality and range of 

variation, and find little support for normality. Our results are robust to attribute dimensionality 

in experimental design. Implications of our results for practitioners in the field are discussed. 
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1. Introduction 
 

Product differentiation is a strategic tool for food market operators. Success in this area is 

heavily reliant on having adequate market information coming from reliable methods for 

differentiated consumer preference analysis. As a consequence, the mixed logit models for food 

choice data analysis introduced by Revelt and Train in 1998 were enthusiastically embraced 

by empirical researchers (Bonnet and Simioni 2001; Cicia, Del Giudice and Scarpa 2002; Lusk 

and Schroeder 2004; Alfnes et al. 2006; Rigby and Burton 2006) and are still widely used 

(Ortega et al. 2011; Caputo, Nayga and Scarpa 2013; Scarpa et al. 2013; van Wezemael et al. 

2014; De Marchi et al. 2016; Bazzani et al. 2017). Operationalizing mixed logit models, 

however, requires assumptions on mixing preference distributions for the target population.  

 

The question of what statistical distribution should be selected to model random taste 

coefficients to avoid unwarrented (and sometimes unintended) impacts in terms of data fit and 

welfare estimates, still poses serious empirical challenges to analysts. Like others before us, 

we start by observing that the assumptions on which these models are predicated, despite being 

often strong and crucial to the conclusions, are most often left unpersuasively justified. The 

contribution of this article is to explore the effectiveness of recently introduced tools for a 

robust investigation of such assumptions. Specifically, we offer some significant results on 

range, asymmetry and multimodality of taste distributions, which we deem as substantive for 

the future practice of food choice analyses. Our results also have significant implications for 

conceptual models of consumer demand whose results may be invalidated given their reliance 

on the assumption of uniform preferences (for example, Crespi and Marette 2003; Lapan and 

Moschini 2007; Giannakas and Yiannaka, 2008).  

 

The use of various types of preference mixing—finite, continuous or a combination 

thereof—is by now the presumptive approach in the field of food choice, and it has been in 

many other areas of application (for example, environmental, health or transport economics). 

Yet, most published studies fail to explicitly report investigations on the sensitivity of their 

results to the sometimes crucial distributional assumptions under which they are derived. 

Futhermore, such assumptions are often predicated on weak arguments and motivation 

including operational convenience (for example, such as mathematical tractability), and 

comparisons of fit with alternative distributional assumptions. In this context, it is worth 

highlighting that consistency of maximum likelihood estimates holds only under the correct 

specification, and applies only probabilistically to the ‘comparatively’ best specification, 

especially when all the elements in the set of comparison share some shortcomings (for 

example, all imply symmetry to the mean). 

 

Almost universally in our review of food choice applications, when the selected model 

allows for continuous mixing, it relies on parametric distributions (normal, log-normal, 

triangular, uniform, etc.). This approach is attractive because it reduces the space of parameters 

needed for model fit (for example, from quantiles to only first and second central moments), 
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but it overly simplifies matters, thereby ruling out several behaviourally plausible features of 

taste distributions, such as limited range, asymmetry, strong skewness and multimodality. This 

leads to inadequate conclusions, that often fit oddly in the face of common sense or even of 

mere introspection. Such discomfort has been expressed several times before and traces of it 

can be found in the concluding remarks of several previous papers approaching the issue from 

various persectives (Train and Sonnier 2005, Cherchi and Pollak 2005, Burton, Balcombe and 

Rigby 2009). Warnings of significant biases due to erroneous distributional assumptions have 

been issued since the adoption of the mixed logit methodology. Yet, the issue has continued to 

receive little, if any, attention in empirical analyses of food choice. 

 

To move the field forward, we explore the use of more robust approaches that can enable 

analysts to openly explore behaviourally realistic distributional structures of food taste. In 

practice, this requires the adoption of flexible distributional forms, such as mixture of 

parametric, semi-parametric or non-parametric approaches. There is some obvious resistance 

to adopting these approaches, as they are bound to be somewaht more complex to implement 

and they require larger sample sizes to achieve similar degrees of parameter estimates 

precision. Thus, a successful solution needs to be sufficiently practical to have wide 

applicability. In moving from a standard parametric description of preference variation to a 

more flexible one, the analyst faces several unfamiliar challenges linked to taste distributions. 

In this article, we focus on three important distribution features: the definition of the range of 

variation, symmetry and multi-modality. These features have obvious and important 

repercussions for the computation of statistical expectations and quantiles, which are crucial 

statistics in policy decisions. An example is the well-known so-called ‘fat-tail’ problem (for a 

recent review see Parsons and Myers 2016).  

 

Throughout the article, we use a recently proposed semi-parametric choice model: the 

Logit-Mixed Logit (LML) developed by Train (2016) to explore the sensitivity of our results 

to the three distributional features mentioned above. This model allows for extremely flexible 

mixing distributions, that can accommodate asymmetry and multimodality, but it requires 

setting the range of variation. Hence, we also explore the stability of results in distributional 

outcomes by varying the range (the empirical support of the distribution). In addition, in 

response to recent works on the effect of choice context (Gao and Schroeder 2009; and Caputo, 

Scarpa and Nayga 2017), we also explore the sensitivity of our distributional results across 

food attribute types (for example, cue and independent) when increasing the number of 

attributes (from three to five) in the discrete choice experiment design and associated utility 

functions. Finally, to make the article more salient to recent tendencies in food choice, we 

decided to focus on random utility models specified in the WTP-space, so as to avoid scale 

issues and focus on value distributions.  

 

This study contributes to the existing literature of consumer food preference analysis in 

three important ways. First, all food choice studies that addressed taste heterogeneity using 

continuous mixing have used parametric mixing distributions (that is, largely normal 
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distributions). Hence, they fail to simultaneously address the three issues we focus upon in this 

study. Two of these issues (multimodality and asymmetry) were addressed in Scarpa, Thiene 

and Marangon (2008), but they only applied a flexible semi-parametric distribution to one of 

the various random coefficients in their specification and they used a model in preference 

space. The present study is the first food choice application to simultaneously address the issues 

of range, symmetry and multi-modality for all random coefficients in WTP-space by using a 

flexible semi-parametric distribution. Our approach moves away from the standard 

assumptions of normality without excluding them. Our second contribution is to provide a 

specific exploration of estimates’ sensitivity to the definition of the random coefficients’ range 

of variation. Finally, to the best of our knowledge, this is the first study exploring the sensitivity 

of different distributional features across cue and independent attributes when extending the 

attribute space. As argued by Gao and Schroeder (2009) and Caputo, Scarpa and Nayga (2017), 

the way consumers value a ‘cue’ attribute (described as one whose levels correlate with the 

levels of other potentially absent attributes) and an independent attribute (relates to the physical 

aspects of the product whose information stands alone) can depend on the attribute space. 

Hence, this study adds to this stream of literature by showing that not only would consumers 

value these attributes differently across design dimensions, but also by suggesting that cue and 

independent attributes might be systematically characterized by different distributional features 

and context dependency.  

 

The remainder of the article is articulated as follows. In the next section, we provide a brief 

and essential literature review as a background to highlight the glaring knowledge gap that we 

approach to fill. The third section provides a description of the data used. The fourth section 

discusses the method we employ and this is followed by a description of the estimation strategy 

and the discussion of the results. The final section presents our conclusions and some 

recommendations for changes in the practice. 

 

2.  Background 
 

That the researcher’s choice of taste distribution matters has been a central tenet of taste 

heterogeneity studies from its beginning. As early as 1999, Wedel et al. and later on in 2003 

Hensher and Greene provided detailed guidance for its selection. A more recent review on the 

topic can be found in a working paper by Yuan, You, and Boyle (2015). Several early studies 

showed that parametric mixing distributions assumed ex-ante by researchers (for example, 

normal, lognormal, among others) may be limiting and may introduce mis-specification 

problems (Train and Sonnier 2005, Cherchi and Pollak 2005, Burton, Balcombe and Rigby 

2009). These papers focused on bounding ranges of variation and therefore signs, and 

suggested remedies on how to handle distributions for theoretically signed coefficients (for 

example, for price) on the negative or positive orthants, and on asymmetry. For example, these 

papers explored parametric distributions or transformations thereof, which required further 

parameter estimates in the transformation function, often, as in the Johnson-SB, of complex 

empirical identification. The evidence provided emphasised the vulnerability of  results to bias 
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of different importance and size, in terms of post-estimation applications. Bias affects 

probability forecasts, marginal effects and welfare measures, all of which are of high relevance 

in food choice and food policy analysis. 

 

Later studies have gone further in the direction of adding flexibility, often in an attempt to 

uncover multi-modality when present and of practical relevance. These studies have proposed 

either mixtures of parametric distributions (e.g. mixtures of normals Train 2008, Wasi and 

Carson 2013), or the use of either semi- or non-parametric mixing distributions (Bajari, Fox, 

and Ryan 2007; Fosgerau and Bierlaire 2007; Scarpa, Thiene and Marangon 2008; Train 2008; 

Bastin, Cirillo and Toint 2010; Fox, Ryan and Bajari 2011; and Fosgerau and Mabit 2013). 

Such distributions are more flexible in retrieving preference heterogeneity, thereby 

accommodating multimodality as well as asymmetry, and hence skewness. They may even 

come with the added bonus of being computationally less expensive in estimation (Train 2016; 

Bansal, Daziano, and Achtnicht 2016). However, because they are based on splines or 

polynomials, they are reliant on a larger parameter space than simply means and variances. 

Morevover, their sample-size requirements to achieve given degrees of accuracy are likely to 

be larger than those required by parametric distributions. 

 

When the focus of taste heterogeneity is on economic values of food attributes, the typical 

subjects of investigation are distributions of marginal willingness to pay (mWTPS) or total 

welfare changes for selected food attributes. In linear utility specifications, these are non-linear 

functions of parameter estimates, such as ratios, and whenever price coefficients are random, 

the estimates of these functions are sensitive to distributional assumptions on the price 

coefficient. Early attempts to deal with this issue often resulted in studies in which the price 

coefficient was assumed to be fixed. This is, however, a scarsely defensible assumption, as it 

implies a fixed marginal utility of money. Other solutions rely on bounding its range of 

variation by, for example, using constrained triangular distributions (Alfnes et al. 2009; 

Hensher and Greene 2009; Scarpa et al. 2013; Hensher, Rose and Greene 2015) or the 

previously mentioned uniform or Johnson-SB distributions. 

 

A solution for this has been eloquently and persuasively discussed elsewhere (Train and 

Weeks 2005; Scarpa, Thiene, and Train 2008; Daly, Hess and Train 2012), and it suggests 

rescaling utility by the error scale. This solution was suggested earlier by Cameron and James 

(1987) in the context of contingent valuation, and it provides a specification of random utility 

directly in the WTP-space. Here, the random coefficients of attributes can be readily interpreted 

as marginal WTPs, and their distributions are derived in a manner less sensitive to the 

distributional assumptions for the price coefficient. However, up until now, they still have been 

reliant on parametric distributional assumptions (Balcombe, Burton, and Rigby 2011; Thiene,  

Scarpa and Marangon 2008). 

 

Finally, Rose and Masiero (2010), argued that the assumptions implied by random utility 

models can be context dependent and affected by the nature of the datasets used and/or 
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dimensions of experimental designs. In food choice studies, for example, a number of recent 

papers have shown a specific interest in the sensitivity of marginal WTPs estimates to both 

expansion and hierarchy of food attributes (Gao and Schroeder 2009; Caputo, Scarpa and 

Nayga 2017). This literature explores the effects of progressively adding independent food 

attributes to choice contexts based on cue attributes in experimental choice. They found 

evidence of significant shifts in the means of the marginal WTPs, an issue which we also 

address in this study. As mentioned in the introduction, our study builds upon the issues 

discussed above and contributes to this body of extant literature.  

 

3.  Empirical Data  
 

In our investigation, we use choice data from two choice experiments (A and B) exploring the 

effect of an incrementally larger set of attributes on beef selection. The dataset we use is part 

of a larger project investigating the effects of adding independent food attributes to cue 

attributes in discrete choice experiments published elsewhere (Caputo, Scarpa, and Nayga 

2017). We use data from two experiments: Experiment A, which included only three beef 

attributes (Certified U.S., Guaranteed Tender, and Price), and Experiment B, which added two 

more beef characteristics (Guaranteed Lean, Sell-By Date) for a total of five attributes. As in 

Caputo, Scarpa, and Nayga (2017), in this study we defined Certified U.S. as ‘cue attributes’, 

and Guaranteed Tender, Guaranteed Lean, and Sell-By Date as ‘independent attributes’. In 

both experiments the price attribute was specified with four levels: $4.64; $6.93; $9.22; $11.50. 

The other attributes were simply binary; they were either specified as present or absent in food 

product profiles. Each respondent was assigned to undertake a panel of eight choice tasks. Each 

task involved the selection of their preferred alternative out of three: two beefsteak profiles and 

the ‘no-purchase’ option. Sample statistics and further details about the experimental designs 

are reported in Caputo, Scarpa, and Nayga (2017). Table 1 shows the attributes and attribute 

levels included in this study and highlights the different use of the data from what done in 

Caputo, Scarpa, and Nayga (2017) and the present study.   

 

4.  Econometric Models  
 

As previously discussed, we use a WTP-space utility specification in our analysis (Weeks and 

Train 2005). The objective of the investigation is to use flexible distributional assumptions for 

marginal WTPs, which allows us to retrieve more realistic taste distributions for food attributes 

because they allow for multimodality and asymmetry. We then contrast these flexible semi-

parametric results with the standard parametric distributions based on normality, derived by 

using the familiar context of the mixed logit model (MXL) for panel data, as described in Revelt 

and Train (1998) (see also Train 2009). 

  



8 
 

Table 1:  Attributes and Experiments  
 

Caputo, Scarpa and Nayga 2017 Present Study  
 

Experiment A Experiment B Experiment C Experiment A Experiment B 

Attributes (attribute levels) A1 A2 B1 B2 C1 C2 From A1 From C1 

         

Price ($4.64;$6.93; $9.22; $11.50)  √ √ √ √ √ √ √ √ 

Certified U.S. Product 

(absent/not absent)  

√ √ √ √ √ √             

√ 

 √ 

√ 

Guaranteed Tender  

(absent/not absent ) 

√ √ √ √ √ √ √ √ 

Guaranteed Lean  

(absent/not absent) 

  √ √ √ √ √   √ 

Days before Sell-by Data  

(2 days; 8 days) 

      √ √ √     

Enhanced Omega-3 fatty acids 

(absent/not absent) 

          √     

                  

Number of respondents  201 183 208 201 208 
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 The flexible distribution approach is to be implemented by using the logit mixed logit 

(LML) model recently proposed by Train (2016). If the data display evidence of multimodality 

and asymmetry for some attribute mWTP, the flexible approach will make it apparent, while 

the MXL with normal distributions will hide this feature. For example, in Scarpa, Thiene and 

Marangon (2008), a random coefficient attribute that when assumed to be distributed normal 

showed an insignificant mean estimate with value close to zero and a very large standard 

deviation, once its distribution was evaluated semi-parametrically (using the Legendre 

polynomial method proposed by Fosgerau and Bierlaire 2007), it showed a much more 

plausible bi-modal distribution. The two modes, one at each side of zero made it clear that 

some consumer types desired the attribute and others objected to it. The normal interpretation, 

instead, implied indifference to the attribute, a difference with clear implications for marketing. 

 

However, the investigation of the sensitivity of results to the range of variation, which 

needs to be defined a-priori for the LML, needs some decision rule. Train (2016) uses a range 

spanning two standard deviations (2SD) at both sides of the estimated mean. So, to start with, 

we adopt this approach too, which should work if the real range of variation is symmetric 

around the mean. Yet, in the presence of fat tails or multimodality, it might be inadequate. In 

this case, one can obtain guidance on how to extend the range to investigate by visual inspection 

of the histogram depicting mixing distributions resulting from the LML approach. More on this 

issue is reported in the estimation strategy section. We now proceed by briefly detailing the 

nature of both models, but we direct the readers interested in the details to the seminal papers. 

 

Utility in WTP-Space 
 

Following Train and Weeks (2005), the utility that individual n derives from choosing 

alternative j within a choice set J in choice situation t can be expressed as follows: 

 

 (1)                         𝑈𝑛𝑗𝑡 = 𝑉𝑛𝑗𝑡 + 𝜀𝑛𝑗𝑡 = 𝜏𝑛(−𝑃𝑟𝑖𝑐𝑒𝑗𝑡 +𝜔𝑛
′ xjt) + 𝜀𝑛𝑗𝑡 

 

where 𝑉𝑛𝑗𝑡 is the observed portion of the utility;  𝜀𝑛𝑖𝑡 is the error term, assumed to follow a 

Gumbel distribution; n is a random positive scalar representing the price/scale parameter; here 

𝑃𝑟𝑖𝑐𝑒𝑗𝑡 is the price level for 12 ounce of beef steak for alternative j and choice situation t, 𝜔𝑛 

is a vector of estimated marginal WTPs;  𝐱jt is a vector of the observed non-price attributes for 

alternative j. In our application, these attributes are: US (Certified US product) and Tender 

(Guaranteed Tender) in experiment A, while in experiment B two more are added: Lean 

(Guaranteed Lean), and Sell (Sell-by Date).  

 

Panel Mixed Logit  

 

Let 𝑦𝑛𝑗𝑡 = 1 if individual n chooses alternative j in choice situation t, and 0 otherwise. 

Conditional on the vector <𝜏𝑛, 𝜔𝑛>, the probability of a sequence of T choices, assuming 

independence between choices is:  
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(2)                                   𝐿𝑛𝑗𝑡(𝜏𝑛, 𝜔𝑛) = ∏ ∏ [
exp(𝜏𝑛(−𝑃𝑟𝑖𝑐𝑒jt+𝜔n

′ xjt))

∑ exp(𝜏𝑛(−𝑃𝑟𝑖𝑐𝑒it+𝜔n
′ xit)𝑖∈𝐽

]
𝑦𝑛𝑗𝑡

𝐽
𝑗=1

𝑇
𝑡=1  

The unconditional probability requires integrating over the distribution of the random 

parameter across respondents. To simplify notation, let us re-define <𝜏𝑛, 𝜔𝑛> as 𝛽𝑛. The 

unconditional probability of the sequence of alternatives chosen by individual n can be 

expressed as follows:  

 

 (3)                                            P𝑛{Θ} = ∫𝐿𝑛𝑗𝑡(𝛽𝑛) 𝑓(𝛽𝑛|Θ)𝑑𝛽𝑛 

 

where 𝑓(𝛽𝑛|Θ)is the probability density function of the vector of random parameters, as 

defined by the hyper-parameters Θ.  

 

 In what we take as the reference model, the mixture for the random parameters 𝛽𝑛 is 

multivariate normal, so 𝛽𝑛 ∼ 𝑁(𝜇, Ω) and Θ =< 𝜇, Ω >. In other words, the hyper-parameters 

are the mean vector 𝜇 and the variance and covariance matrix Ω. Note here that for each random 

WTP the mean, median and mode all coincide, and the range with meaningful symmetric 

density around the means is a function of Ω. All these are undesirable restrictions that are 

usefully relaxed in the flexible specification that we now describe, proposed by Train (2016). 

 

Panel Logit Mixed Logit  (LML)  
 

Unlike the MXL, in the LML model the joint mixing distribution of the random parameters 𝜔𝑛 

is assumed discrete over a finite support set S. Discretization is not a constraint because the 

support set is essentially a multidimensional grid that can be made larger and denser by 

considering a broader domain of parameters and a higher number of grid points. As shown in 

Train (2016), the joint probability mass function of random parameters 𝛽𝑟 ∈ 𝑆 in the LML is 

represented by a logit formula:  

 

(4)                                           Pr(𝛽𝑛 = 𝛽𝑟) ≡ 𝑊(𝛽𝑟|𝛼) =
exp(𝛼′𝑧(𝛽𝑟))

∑ exp(𝛼′𝑧(𝛽𝑠))𝑠∈𝑆
 

 

where 𝛼 is a vector of probability mass parameters and 𝑧(𝛽𝑟) defines the shape of the mixing 

distribution. Substituting in equation (3), the unconditional probability𝑃𝑛(𝛼) of the sequence 

of choices of individual n is then: 

 

(5)                                         𝑃𝑛(𝛼) = ∑ 𝐿𝑛𝑗𝑡(𝛽𝑛) [
exp(𝛼′𝑧(𝛽𝑟))

∑ exp(𝛼′𝑧(𝛽𝑠))𝑠∈𝑆
] .𝑟∈𝑆    

 

Note that the hyper-parameter is now the vector 𝛼 and that the flexibility depends on the nature 

of the logit transformation of the z functions, to which we now turn.    
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The z Functions in the LML 
 

Following Train (2016) three types of z functions are adopted here: orthogonal polynomials 

(for model LML-poly), grids (step-functions) (for model LML-step), and splines (for model 

LML-spline). 

 

In his 2016 seminal article, Train starts from showing how normality can be approximated 

by specifying z as a second order polynomial in 𝛽𝑟. More flexibility in the shape of the 

distribution, allowing for asymmetry and multimodality, can be achieved by polynomials with 

higher order than second (in our LML-poly we use orders two, four, six, and eight), bearing in 

mind that the number of inflection points is equal to the polynomial order minus one. Of the 

various categories of polynomials available, orthogonal polynomials, such as Legendre 

polynomials (but also Hermite, Jacobi, Chebyshev, Bernstein polynomials), have the advantage 

of having uncorrelated terms. Correlation across 𝛽𝑟can be achieved by using cross-products 

of only first order terms, which greatly reduces the number of necessary parameters.  

 

A second type of 𝑧(𝛽𝑟) is represented by a step function based on a grid over the parameter 

ranges (that is, the support). Consider partitioning the set S into G possibly overlapping subsets 

Hg. Consider the probability mass 𝑊(𝛽𝑟|𝛼)being the same for all points in a given subset, but 

different across subsets. In this case (LML-step) we have the following probabillity mass 

function:  

 

(6)                                  Pr(βn = βr) ≡ W(βr|α) =
exp(∑ αm

M
m=1 (βr∈Tm))

∑ exp(∑ αm
M
m=1 (βs∈Tm))s∈S

 

 

This set up generates a type of latent class at each point, except that the parameter values 

of each class are predefined, instead of being the outcome of an estimation, as in the case of a 

standard latent class model. In practice, a computational limitation of this approach is that with 

many attributes in the utility function the number of evaluations becomes quickly infeasible, 

even with rather broadly-spaced grids. In this study we use LML-step with four, six, eight and 

ten mass points.  

 

Splines can also be used (in LML-spline) as they conform to the 𝛼′𝑧(𝛽𝑟) format required 

in (5). To illustrate, take an interval for a single parameter 𝛽 that goes from start point 𝛽1 and 

end point 𝛽4, with 𝛽4 < 𝛽2and consider the two intermediate points (knots) 𝛽2 and 𝛽3, with 

𝛽2 < 𝛽3. Using I(.) as an adequate indicator function, this gives rise to the following four 

elements of the vector 𝑧(β): 

 

𝑧1(𝛽) = (1 −
𝛽 − 𝛽1
𝛽2 − 𝛽1

) 𝐼(𝛽 ≤ 𝛽2), 

(7)        𝑧2(𝛽) = (
𝛽−𝛽1

𝛽2−𝛽1
) 𝐼(𝛽 ≤ 𝛽2) + (1 −

𝛽−𝛽2

𝛽3−𝛽2
) 𝐼(𝛽2 < 𝛽 ≤ 𝛽3), 

𝑧3(𝛽) = (
𝛽 − 𝛽2
𝛽3 − 𝛽2

) 𝐼(𝛽2 < 𝛽 ≤ 𝛽3) + (1 −
𝛽 − 𝛽3
𝛽4 − 𝛽3

) 𝐼(𝛽3 < 𝛽), 
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𝑧4(𝛽) = (
𝛽 − 𝛽3
𝛽4 − 𝛽3

) 𝐼(𝛽3 < 𝛽), 

 

 The elements of the vector 𝛼 requiring estimation in this case are only three, since the 

height of the spline is standardized to one (only relative height matters). Note that in (5) it is 

exp(𝛼′𝑧(𝛽𝑟)) that defines the probability mass, and hence this non-linear transformation 

changes the spline shape, allowing flexibility. In this study, we use LML-spline with two, four, 

six and eight knots.  

 

5. Model Estimation Strategy and Results  
 

The data from Experiment A with two food attributes and Experiment B with four food 

attributes are used to estimate separate MXL models with normal mixing distributions for all 

mWTPs, i.e.,𝜔𝑛~𝑁(𝜇, Ω) and lognormal distribution for the scale/price coefficient factor. We 

termed these specifications as MXL-N and we use the results as reference points for 

comparisons with the flexible distribution model. In our specification search, we estimate a 

range of flexible distribution models, with different z functions and increasing number of 

parameters to explore the sensitivity of our results to increased flexibility. Specifically, four 

LML-polynomial (with order being four, six, and eight), four LML-step (with four, six, eight, 

and ten ‘steps’ or mass points), and four LML-spline (with knots being two, four, six, and eight) 

models1 are estimated from data from each experiment. These flexible distribution models were 

estimated by using [0, 2] as the range of variation for the price/scale coefficient. To explore the 

sensitivity to range, we investigate three different ranges for the mWTPs for food attributes. 

The extreme values of these ranges define the highest and the lowest marginal WTP values in 

the parameter space S and are constructed using the following three approaches:  

 

(1) Two standard deviations above and below the mean marginal WTPs obtained from the 

MXL-N model, this is the approach used in the seminal paper by Train (2016);  

 

(2) We then extend the range to cover three standard deviations above and below the mean of 

marginal WTPs obtained from the MXL-N model, to explore behavior in the tails; and 

 

(3) We extended the upper or lower range limits any time a sufficiently high probability mass 

was observed at the lowest and/or highest bin of the histogram. That is, whenever the tails 

of the distribution derived from (1) and (2) above had large mass.   This assessment was 

made by visual inspection, but formal tests can be used.  

 

 The rationale for extending the range in these cases rests on our desire to investigate 

whether the high mass probability is due to an accumulation of consumers predicted to have 

mWTPs values at the upper end of the range, but who in reality have higher values and should 

                                                           
1 For all models, during estimation the probability integral in equation (3) was approximated by using 

2000 random draws for each person in the sample.  
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hence have probability mass located outside the investigated range. Alternatively, these mass 

points at high/low mWTP values could be confirmed to be accurate representations of 

preference densities. Some degree of asymmetry is to be expected in these distributions because 

of the very nature of the attributes; however, the MXL-N model forces symmetry around the 

mean/median/mode. After ascertaining the robustness of distributional findings in terms of 

range, asymmetry and multimodality, we assess their repercussion comparatively to the MXL-

N results and across the two experiments with varying number of attributes. 

 

Data from each of the two experiments are used to estimate 24 models: four grid densities 

times three different ranges of variation times two experiments (A and B). This is repeated for 

each of the three types of z function (poly, step and spline), for a total of 52 flexible distribution 

models, respectively (26 per experiment).  

 

The proper selection method for best performing models in the context of choice models 

with flexible semi-parametric distributions is still a subject of debate. In our case, we use 

standard information criteria that promote parsimony in the number of parameters: Akaike 

Information Criteria (AIC), the Bayesian Information Criteria (BIC), and modified Akaike 

Information Criteria (3AIC). The lower the information criterion value, the better the fit.  

Table 2 reports the model fit statistics for all models estimated across experiments A and B for 

each range approach utilized to define the highest and the lowest marginal WTP values in the 

parameter space S.  

 

It can be noted that increasing the number of parameters improves the log-likelihood value, 

but does not necessary improve the information criteria values as these penalize for over-

parameterization. This finding is consistent with Bansal, Daziano, and Achtnicht (2016), who 

employed the LML-polynomial, LML-step, and LML-spline models in both a Monte Carlo and 

empirical studies in the field of transportation. For ranges selected using the method of 2SD 

around the means estimated from the MXL-N, the best performing (accounting for all criteria) 

LML-polynomial models are those with fourth order polynomial in both experiments. In the 

LML-step models, it is with 6 steps and 4 for Experiment A and B, respectively, although for 

Experiment B the one with 8 steps has lowest AIC. For the LML-spline model, those with two 

knots outperform the rest in both experiments. Importantly, all flexible models outperform the 

MXL-N, except for the data in Experiment B but only when used in an extended asymmetric 

range. Exploring asymmetry seems to be more costly with over-parameterized models, which 

makes sense. For models with ranges established as 3SD around the MXL-N means, the best 

performing ones are those with the fewest parameters. This is true across all three z functions, 

although in Experiment B, the LML-step with 4 steps has better performance. 

 We now turn our attention to exploring the issue of asymmetry. To do so, we extend the 

range of variation for selected mWTPs based on visual inspection of the histogram 

representations of the mWTPs distributions from the 2SD and 3SD. These are reported in 

Figure 1 for the two steak attributes of Experiment A (US origin and certified tenderness).  
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Figure 1: Estimated Distributions of Food Attribute Coefficients 

Experiment A 
    

   

  

 

Both attributes show evidence of bi-modality in both 2SD and 3SD taste distributions, 

with high mass around small positive dollar values (0-6 for US and 0-3 for tender, both with 

highest mass at around 2 dollars), but also some high mass at the upper end of the dollar range. 

These upper tail values on the mWTP range are worth investigating further by extending the 

range. As a consequence, the upper limit in the third set of models for the tenderness attribute 

was extended from 6 and 8 dollars to 16, with the results of shifting and spreading the 

probability mass previously cumulated at 6 and 8 dollars over the range 8-12 dollars. A similar 

re-estimation for the US origin attribute, with range increased to a highly unlikely 50 dollars, 

shows that significant mass is still present at values over 20 dollars, with a third mode with 

mass at 40! This is brought about by a shift in the polynomial from the 4th to the 6th order. In 

fact, asymmetry in the range increases the number of parameters of the best fitting models 

across all z functions, for both experiments, except for Experiment B with LML-polynomial. 
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Table 2:  Model Information Criteria of MXL-N and LML models, Experiments A and B 

Model     LL Par BIC AIC 3AIC  LL Par BIC AIC 3AIC 

  
Experiment A (1,608 choices, N=201) Experiment B (1,664 choices, N= 208) 

  Normal Distribution  

MXL-N  -1125 10 2324 2270 2280  -1294 21 2744 2630 2651 

LML Polynomial 
 

2SD above and below the mean 

 
4  -995 19 2129 2027 2046  -1239 34 2730 2546 2580 

 
6  -986 27 2172 2027 2054  -1233 46 2807 2558 2604 

 
8  -974 35 2206 2018 2053  -1225 58 2881 2566 2624 

 
10  -974 43 2266 2035 2078  -1209 70 2937 2558 2628 

LML Step 
            

 
4  -993 21 2142 2029 2050  -1248 38 2778 2573 2611 

 
6  -979 29 2173 2016 2045  -1233 50 2836 2565 2615 

 
8  -982 37 2237 2038 2075  -1220 62 2900 2564 2626 

 
10  -968 45 2269 2026 2071  -1216 74 2981 2580 2654 

LML Spline 
           

 
2  -987 21 2130 2017 2038  -1243 38 2768 2562 2600 

 
4  -979 29 2173 2017 2046  -1230 50 2831 2560 2610 

 
6  -974 37 2221 2022 2059  -1221 62 2902 2566 2628 

 
8  -957 45 2247 2005 2050  -1210 74 2969 2568 2642 

LML Polynomial  3SD above and below the mean 

 
4  -982 19 2104 2001 2020  -1265 34 2782 2598 2632 

 
6  -977 27 2153 2007 2034  -1259 46 2859 2610 2656 

 
8  -975 35 2209 2021 2056  -1245 58 2920 2606 2664 

 
10  -972 43 2261 2029 2072  -1240 70 3000 2620 2690 
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Table 2 continued            

Model 

 
LL Par BIC AIC 3AIC 

 
LL Par BIC AIC 3AIC 

   Experiment A (1,608 choices, N=201)  Experiment B (1,664 choices, N= 208) 

LML Step              

 4  -987 21 2130 2017 2038  -1261 38 2805 2599 2637 

 6  -990 29 2194 2038 2067  -1261 50 2892 2622 2672 

 8  -981 37 2236 2037 2074  -1238 62 2936 2600 2662 

 10  -977 45 2286 2044 2089  -1236 74 3021 2620 2694 

LML Spline             

 2  -984 21 2122 2009 2030  -1270 38 2821 2615 2653 

 4  -978 29 2170 2014 2043  -1255 50 2882 2611 2661 

 6  -976 37 2225 2026 2063  -1245 62 2951 2615 2677 

 8  -969 45 2271 2028 2073  -1235 74 3019 2619 2693 

LML Polynomial  Visual Inspection 

 4  -1021 19 2182 2080 2099  -1353 34 2959 2775 2809 

 6  -1000 27 2200 2054 2081  -1349 46 3038 2789 2835 

 8  -994 35 2247 2059 2094  -1345 58 3121 2807 2865 

 10  -994 43 2306 2074 2117  -1341 70 3202 2822 2892 

LML Step            

 4  -1015 21 2186 2073 2094  -1367 38 3016 2810 2848 

 6  -990 29 2194 2038 2067  -1343 50 3056 2785 2835 

 8  -997 37 2268 2068 2105  -1331 62 3121 2786 2848 

 10  -993 45 2319 2077 2122  -1326 74 3200 2799 2873 

LML Spline             

 2  -1016 21 2187 2074 2095  -1365 38 3011 2806 2844 

 4  -993 29 2200 2044 2073  -1341 50 3053 2782 2832 

 6  -994 37 2261 2062 2099  -1331 62 3121 2786 2848 

  8  -981 45 2294 2052 2097  -1324 74 3197 2796 2870 
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We finally turn our attention to the stability of the distributional features to the addition of 

other food attributes in choice, by comparing the histograms for US origin and tenderness 

attributes of Experiment B (the two top rows of Figure 2) with 4 non-price attributes with the 

results obtained in Experiment A with only two (in Figure 1).  

 

 

 

Figure 2: Estimated Distributions of Food Attribute Coefficients 

Experiment B 
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Unexplained context-dependency of results is generally regarded as a negative feature in 

all methods, and this has been a criticism recently leveled to discrete choice models from 

experimental food data before (Gao and Schroeder 2009; Caputo, Scarpa, and Nayga 2017). 

This evidence, however, was obtained under parametric distributional assumptions. Whether 

this is still an issue with flexible functional forms is what we explore here. Comparing figures 

1 and 2, we note that the bimodality of the taste distribution for the US origin and tenderness 

attributes are still supported by the results obtained with the symmetric ranges 2SD and 3SD. 

But once the asymmetric range is used, only the US attribute remains bimodal, while all other 

distributions appear unimodal and strongly skewed to the left—more so than what a normal 

distribution would correctly capture—and with well-behaved upper tails that taper out. 

Balcombe, Burton and Rigby (2009) already focussed on skewness and reported this to be an 

empirical regularity in preference distributions. Further, we note that the value range is less 

extended for these attributes in Experiment B than in Experiment A. This is consistent with 

what we expect in a choice context in which some cue attributes lose value in the presence of 

properly specified independent attributes, which would otherwise embed some value in the cue 

attributes when they are unspecified (Caputo, Scarpa and Nayga 2017). It is also confirmed by 

the mean and standard deviation values for the mWTPs reported in Table 3. 

 

Table 3: Statistics of Marginal WTP Estimates from MXL-N and LML  

Bootstrapped Standard Errors, Models 

Experiments A and B 

      

Experiment A 

  

Experiment B           

Models  
 

MXL-N LML-Polynomial MXL-N LML-Polynomial  

      2SD 3SD Vis. Insp.    2SD 3SD Vis. Insp.  

Variables  Par 
        

          

US µ 5.56* 

(0.47)1 

5.13* 

(0.24) 

6.14* 

(0.16) 

7.92* 

(0.60) 

3.53* 

(0.30) 

3.75* 

(0.26) 

4.29* 

(0.37) 

5.87* 

(0.21) 

σ 4.39* 

(0.64) 

4.32* 

(0.94) 

5.76* 

(0.78) 

9.36* 

(1.36) 

3.17* 

(0.33) 

3.36*  

(0.16) 

3.94*  

(0.15) 

6.46*  

(0.42) 

Tender  µ 2.35* 

(0.37) 

1.89* 

(0.35) 

2.18* 

(0.31) 

2.43** 

(1.30) 

1.26*  

(0.34) 

1.82*  

(0.14) 

1.51*  

(0.33) 

1.89**  

(1.03) 

σ 1.79* 

(0.47) 

1.29* 

(0.14) 

2.11* 

(0.23) 

2.97* 

(1.00) 

1.99*  

(0.34) 

1.71*  

(0.22) 

2.70*  

(0.25) 

4.40*  

(0.52) 

Lean  µ 
    

1.26*  

(0.31) 

1.62*  

(0.05) 

1.22*  

(0.19) 

1.85*  

(0.53) 

σ 
    

2.07*  

(0.29) 

1.36*  

(0.26) 

2.19*  

(0.31) 

4.85*  

(0.62) 

Sell  µ 
    

1.13*  

(0.24) 

1.02*  

(0.25) 

1.00*  

(0.29) 

1.61**  

(0.81) 

σ 
    

1.88*  

(0.31) 

1.49*  

(0.06) 

2.26*  

(0.30) 

4.31*  

(0.55) 

Note: Asterisk (*) and double asterisk (**) denote coefficients significant at 1% and 5% respectively. 
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 This evidence corroborates the hypothesis that some sensitivity of results to the choice 

context is present, even when using flexible distributions. Yet, the main non-normal features 

of the distributions of tastes for cue attributes seem relatively stable to context. Interestingly, 

extending the range to the right, which allows for asymmetry, in the mWTP for the sell-by date 

attribute produces an upper tail that tapers out, rather than the bimodal distribution portrayed 

in the symmetric 2SD and 3SD results. Once again, behavior on the tails matters, and it is best 

captured by the asymmetric range, as the 2SD and 3SD representation still indicate bimodality 

for taste of this attribute. Altogether, these results suggest significant departures from the 

standard normality assumptions commonly invoked by food choice analysts in existing 

preference heterogeneity studies. 

 

6. Robustness Check of Observable vs. Unobservable Sources of Heterogeneity   
 

Differences in consumer preferences for food attributes can be explained by observable and/or 

unobservable sources of preference heterogeneity. Observable sources of preference 

heterogeneity such as demographics are those known by the researcher.  They are commonly 

incorporated into discrete choice models through interactions with the experimentally designed 

levels of the attributes. The basic assumption of this modeling approach is that consumer 

preferences are heterogeneous due, at least in part, to differences in preferences across diverse 

socio-demographic groups. However, unobservable sources of preference heterogeneity may 

still remain even after such interactions are accounted for. These are unknown to the researcher 

and they are typically modeled by assuming random taste variation via the estimation of MXL 

models, where the distribution of random coefficients is intended to approximate unobserved 

sources of preference heterogeneity.  

 

A natural question to ask in our study is whether the distributional features identified 

by the LML for each attribute of interest are due to observed and/or unobserved sources of 

preference heterogeneity. Taking advantage of the fact that we collected socio-demographic 

data during the CE surveys so as to profile our respondents, the samples from both experiments 

(A and B) were used to estimate MXL-N models in WTP space, accounting for observed 

sources of preference heterogeneity. We did so by interacting the experimentally designed 

attribute levels with the individual characteristics of our respondents. If these interactions are 

statistically insignificant, then we can conclude that observed individual characteristics fail to 

explain preference heterogeneity around the mean (Hensher, Rose and Greene 2015).  This 

does not imply absence of preference heterogeneity around the mean, but simply that the socio-

demographic characteristics of respondents fail to account for it.  The results are presented in 

Table 4 for both experiment A and B.  
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Table 4: Statistics of Marginal WTP Estimates from MXL-N Model 

including Socio-Demographics, Experiments A and B   
Experiment A Experiment B 

Models  
 

MXL-N MXL-N 

Variables  Par 
  

Main effects     

US  µ 5.22* (0.75) 3.05* (0.75) 

σ 4.02* (0.57) 3.13* (0.38) 

Tender 

 

µ 1.92* (0.67) 1.30* (0.58) 

σ 1.80* (0.44) 1.96* (0.40) 

Lean 

 

µ  1.34* (0.62) 

σ  2.06* (0.45) 

Sell 

 

µ  0.19*(0.51) 

σ  1.82*(0.29) 

Interaction terms    

US * Female  µ 0.61** 

(0.31) 

0.47 

(0.29) 

US * Education  µ (0.068) 

(0.32) 

0.16 

(0.34) 

US * Age µ (0.29) 

(0.33) 

0.04 

(0.30) 

US * Income  µ (0.28) 

(0.32) 

(0.23) 

(0.30) 

Tender * Female  µ (0.08) 

(0.20) 

(0.31) 

(0.29) 

Tender * Education  µ 0.34 

(0.230) 

(0.10) 

(0.28) 

Tender * Age µ (0.08) 

(0.23) 

0.27 

(0.26) 

Tender * Income  µ 0.08 

(0.23) 

0.19 

(0.28) 

Lean * Female  µ  (0.29) 

(0.26) 

Lean * Education  µ  (0.04) 

(0.26) 

Lean * Age µ  0.29 

(0.25) 

Lean * Income  µ  0.05 

(0.26) 

Sell * Female  µ  0.21 

(0.23) 

Sell * Education  µ  0.28 

(0.23) 

Sell * Age µ  0.04 

(0.22) 

Sell * Income  µ  0.37 

(0.24) 

Statistics     

Choices   1608 1664 

LL  -1119.67 -1280.62 

Par   18 37 

Number of Respondents   201 208 
Note: Asterisk (*) and double asterisk (**) denote coefficients significant at 1% and 5% respectively.  
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As can be seen from Table 4, none of the interaction terms between the demographic 

variables and the experimentally design attributes are statistically significant across the two 

experiments, with the exception of gender in Experiment A. Hence, our findings generally 

confirm results from a number of applications of discrete choice models analyzing consumer 

food preferences, which have shown that demographic characteristics of respondents often fail 

to explain preference heterogeneity (Nilsson, Foster and Lusk 2006; Gracia, Loureiro and 

Nayga Jr. 2009; Caputo, Nayga and Scarpa 2013). Nilsson, Foster and Lusk (2006) suggest 

that the observable consumer characteristics might be poor indicators of food preference 

heterogeneity when analyzing consumer preferences for credence attributes of food products 

(for example, country of origin, brands, etc.) due to the strong reparability assumption between 

food attributes and demographic information.  

 

Given the significance of the interaction term between gender and the US Certified label 

in Experiment A, we estimated a LML2 for each sub-sample based on gender (male and female) 

to further explore if there is heterogeneity in the estimates. As before, for each sub-sample, 

extreme marginal WTP values in the parameter space S are set to two and three standard 

deviations above and below estimated means of marginal WTPs from the MXL-N model with 

covariates. Also, any time a sufficiently high probability mass was observed at the lowest 

and/or highest bin of the histogram we extended the upper or lower range limits. Figures 3 

(female sub-sample) and 4 (male sub-sample) report the estimated WTP distributions for US 

certified and for guaranteed tender.  

 

Figure 3: Estimated Distributions of Food Attribute Coefficients for Female 

Experiment A 

   

   
 

                                                           
2 Results of the LML by segmented samples (female and male) are reported in Appendix, Table A1.   
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Figure 4: Estimated Distributions of Food Attribute Coefficients for Male 

Experiment A 

 
   

 

 

Even after fitting different distributions by gender, in all cases a clear evidence of 

asymmetry—and to some extent of bimodality—remain. In other words, we still see departures 

from normality even in the sub-sample analysis by gender.    

 

 

7.  Conclusions and Recommendations for Practice 
 

Food choice studies that addressed taste heterogeneity have used parametric mixing 

distributions (i.e., largely normal distributions) that fail to simultaneously address the three 

issues we focus upon in this study in relation to distribution features: the definition of the range 

of variation, symmetry and multi-modality. This is an important topic since these distribution 

issues could significantly affect the distribution of marginal WTP estimates that are used for 

important marketing and policy decisions. This study is the first to simultaneously focus on all 

these issues for all random coefficients of food attributes by using a flexible semi-parametric 

distribution estimated in WTP space.  

 

Should future investigations of preference heterogeneity in food choice studies move 

beyond the parametric distributions in mixed logit? Our findings suggest that researchers using 

mixed logit models should check the robustness of their findings by also using flexible 

distributions. In our investigation on beef preferences, we use a flexible semi-parametric 

approach, the logit mixed logit estimator proposed by Train (2016) and discover that non-

normal distributional features prevail. These features are sensitive to the setting of the range of 

variation and include acute skewness, asymmetry and bimodality. All of these features would 
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affect policy and marketing implications because they are likely to lead to different consumer 

stratifications from those derived using normality assumptions.  

 

The approach used in this study is very flexible and not computationally burdensome, at 

least in our application. Our results suggest that the marginal WTP values show lower means 

in our experiments with a larger set of attributes, in accordance with previous findings in these 

contexts. Some significant probability mass extends over ranges of values that might appear 

very unlikely in reality, because they are excessively high. To limit this problem, and retain 

flexibility, we suggest that upper ranges for marginal WTP distributions from flexible 

distributions might need to be informed by responses to specific questions that can be included 

in survey questionnaires. In this way, the delimitation of the range could be grounded to some 

empirical data based, for example, on self-reported maximum willingness to pay statements for 

specific attributes. 

 

To sum up, given our findings, future food choice analysts should consider systematic 

testing of the sensitivity of their results to the use of different parameter distributional features. 

Our hope is that this study will start a serious discussion about and consideration for this issue, 

given the increasing popularity of the use of discrete choice models in food choice studies. 

These studies are typically used not just for business applications, but also for welfare and 

policy analysis. Our results also have significant implications for research in other fields of 

inquiry where uniform type distributions between two extremes are commonly used (for 

example, studies investigating the market and welfare effects of novel food products and labels) 

since failure to capture deviations from normality could have serious economic consequences. 
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Appendix A 

 

Table A1: Statistics of Marginal WTP 

Estimates from the LML Model Across Demographics, Bootstrapped Standard Errors,  

Experiment A 
   

Female  Male  

Models  
  

Polynomial  Polynomial  

   2SD 3SD Vis. Insp.  2SD 3SD Vis. 

Insp.  

Variables  Par 
 

      
   

      

US µ 
 

6.49* 

(0.35) 

7.64* 

(0.45) 

10.67* 

(2.34) 

4.13* 

(0.18) 

5.15* 

(0.74) 

5.55* 

(0.59) 

σ 
 

5.12* 

(0.57) 

7.16* 

(0.42) 

12.26* 

(3.58) 

3.91* 

(0.46) 

5.76* 

(1.10) 

8.16* 

(0.97) 

Tender µ 
 

2.44* 

(0.59) 

2.37* 

(0.55) 

4.68* 

(0.99) 

1.94* 

(0.17) 

1.97* 

(0.52) 

2.87* 

(0.66) 

σ 
 

1.26** 

(0.67) 

2.11* 

(0.33) 

8.63* 

(3.34) 

1.40* 

(0.31) 

1.62* 

(0.42) 

5.22* 

(2.32) 

Statistics          

Choices    1056 1056 1056 552 552 552 

LL   672.44 672.44 672.44 312.74 312.74 312.74 

Par    19 19 19 19 19 19 

N of. Respondents   132 132 132 69 69 69 

Note 

Asterisk (*) and double asterisk (**) denote coefficients significant at 1% and 5%, respectively.

 

 


