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Abstract 
 

This paper investigates the causal relationships, cointegration and price discovery between spot 

and futures markets of Bitcoin using the daily data from a time-varying perspective for the first 

time in the literature. We apply the time-varying Granger causality test of Shi et al. (2018) to 

explore the causal relationship between spot and futures markets and find that futures prices 

Granger cause spot prices. We identify the existence of a cointegration relationship under the 

consideration of a time-varying cointegrating coefficient between spot and futures prices based 

on the Park and Hahn (1999) test. We also explore the time-varying price discovery process 

and find that futures prices dominate in the process, implying a leading informational role. 
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1. Introduction

Bitcoin was the first digital asset established in 2008 by Satoshi Nakamoto. Since then, the price

of Bitcoin has increased from less than US$1 in 2010 to reach a peak of approximately US$19,000

in December 2017. During its peak in 2017, the Chicago Board Options Exchange (CBOE) and

the Chicago Mercantile Exchange future markets (CME) introduced futures contracts for Bitcoin on

10 December 2017 and 18 December 2017, respectively. These two Bitcoin futures are regulated

exchanges and both futures are cash-settled in US dollars.1 On March 2019, the CBOE decided not

to list additional Bitcoin futures contracts for trading and the last futures contracts expired on 19

June 2019. As a result, the CME remains the only currently traded and regulated exchange. Some

comparisons of the contract specifications of the CBOE and CME markets as shown as Table 1, below.

Table 1: Some key comparisons of the CBOE and CME futures markets.

CBOE Futures CME Futures

Contract Specifications

First Trading Date 10 December 2017 18 December 2017

Symbol XBT BTC

Contract Unit 1 Bitcoin 5 Bitcoin

Tick Size $10 per contract $25 per contract

Underlying Spot Price The Gemini auction price from

the Gemini exchange.

The Bitcoin Reference Rate

from the CME.

The Bitcoin futures contracts have drawn some attention from academics. More recently, several

studies have attempted to explore the price discovery in the spot and futures markets for Bitcoin.

Corbet et al. (2018) apply four measures of price discovery including the information share methodology

of Hasbrouck (1995), the component share of Gonzalo & Granger (1995), the information leadership

measure of Yan & Zivot (2010) and the information leadership share measure of Putniņš (2013) between

the CBOE and CME futures and spot prices using data sampled at a one-minute frequency. They

typically find that price discovery is focused on the spot market. However, Corbet et al. (2018) use

the same Bitcoin spot prices for the CBOE and CME. Kapar & Olmo (2019) conclude that the CME

futures market dominates the price discovery process at the daily frequency using the price discovery

measures of Gonzalo & Granger (1995) and Hasbrouck (1995) to explore the contribution of each

market to the price discovery process. Kapar & Olmo (2019) use the Coindesk Bitcoin USD Price

1At the end of the contract, one needs to pay for the difference between the spot and futures prices of Bitcoin. There

are alternative exchanges offer physically settled futures contracts using Bitcoin.
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Index as the spot price. Baur & Dimpfl (2019) also investigate the price discovery of Bitcoin using the

information share methodology of Hasbrouck (1995) and Gonzalo & Granger (1995) using a five-minute

frequency for intradaily data. They conclude that price discovery takes place in the spot market, rather

than the futures market. The transaction price of Bitstamp is used as the Bitcoin spot price in the

analysis for the two futures markets. Although Corbet et al. (2018), Kapar & Olmo (2019) and Baur

& Dimpfl (2019) use the same price discovery measures of Hasbrouck (1995) and Gonzalo & Granger

(1995) to explore this new and interesting area using Bitcoin data, they don’t produce consistent

results. It should be point out that not only future contracts of the CBOE and CME are different, but

their underlying spot prices are also different, see Table 1. However, this important point seems to be

ignored in their empirical calculations of the information shares from the above studies.2 The point

here is that the choice of data sources for analysing pricing dynamics in Bitcoin markets is crucial, see

Alexander & Dakos (2019).

Price discovery, which is generally considered to be an important indicator of the functionality

futures contracts provide towards the underlying spot assets’ transactions, reflects one of the major

contributions of futures markets to the organization of economic activity (Silber, 1981). A number

of empirical studies support the hypothesis that futures prices absorb new information first, which

is then transmitted to the underlying spot market via cross-border transactions. Hence the futures

market is generally regarded to lead the underlying spot price, in the long run. Supporting evidence

for such assumptions have been found widely in the commodity markets and stock index markets (see,

e.g., Garbade & Silber (1983), Bohl et al. (2011), Rosenberg & Traub (2009), Cabrera et al. (2009),

Hauptfleisch et al. (2016), Stoll & Whaley (1990), Chan (1992), Wahab & Lashgari (1993), Ghosh

(1993), Koutmos & Tucker (1996), Pizzi et al. (1998), Yang et al. (2001), Kavussanos et al. (2008); Bohl

et al. (2011); among others). In this literature, the most widely-applied approaches for measuring price

discovery are the Hasbrouck (1995)’s information share (IS) measure and Gonzalo & Granger (1995)’s

permanent-temporary (PT/GG) measure. Both measures are based upon a framework where the

unit-root (non-stationary) price series in the different markets are cointegrated. In such a framework,

all the prices are driven by one common stochastic trend, which is referred to as the “permanent

component” (common factor) in Gonzalo & Granger (1995) and a common efficient price in Hasbrouck50

(1995). In particular, the IS measure calculates the contributions of each market to the variance of the

common efficient price, by accounting for both the error-correction coefficients and the information

generation process. The approach is commonly applied to the examination of the price discovery of

2Baur & Dimpfl (2019) points out the correct spot prices for the CBOE and CME. However, due to data availability,

they use the transaction price of Bitstamp as the spot price.
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futures markets see for example, Booth et al. (1999), Tse (1999), Covrig et al. (2004), Ates & Wang

(2005), Tse et al. (2006) and Chen & Gau (2009), among others.

The identification of the price discovery can be extended to be time variant, since the literature

has found that the assimilation of information to reflect intrinsic values can evolve over time. One

of the main consequences is that a time-varying variance and covariance of price innovations occurs,

which refers the evolving process of information generation. Attempts to capture the time-varying

information share have been recently described in the literature. There appear to be predominantly

three methods established in the literature to capture the time-varying nature of price discovery.

First, the time-varying information share is calculated based upon the time-varying error correction

coefficients that can be derived via a rolling-window estimation on the vector error correction model

(Bell et al., 2016) or a series of scaling factors imposed on the original adjustment coefficients (Taylor,

2011). The second involves calculating the information share that varies at low-frequency intervals, by

using high-frequency tick data (Ates & Wang (2005); Chen & Gau (2009, 2010); Xu & Wan (2015)).

Finally, Avino et al. (2015) propose to generate the time-varying information share by extending the

innovation covariance matrix to be conditional on past information, where the multivariate BEKK-

GARCH model is employed to estimate the conditional covariance matrix.

The informational role of a futures market has been extensively studied by investigating possible

lead-lag relationships between spot and futures markets. The Granger causality is widely used to

formally test for lead-lag relationships (temporal ordering) to determine which market (the spot and

futures prices) leads the other. Care must be exercised here, especially the need for robustness of

the results, as it is well-documented that Granger causality tests can be very sensitive to the time

period of estimation or to assumptions that causal relationships do not change (time invariant) over

time. As shown in Shi et al. (2019), there are many reasons to expect the existence of a time-

varying casual relationship between variables of interests (e.g., changes in economic policy, regulatory

structure, governing institutions, or operating environments). The procedure of Shi et al. (2018) allows

practitioners to examine whether the causal relationship varies over the time, as is likely to be expected

for many economic and financial variables, including Bitcoin.

In addition, the nature of the cointegrating relationship between spot and futures prices has im-

portant implications. For futures and spot markets there exists a priori expectation that there exists

a strong (cointegration) relationship between the two markets. If spot and futures prices are coin-

tegrated, spot-futures parity exists, indicating that no arbitrage opportunities arise. Moveover, the

presence of cointegration also shows that futures markets are efficient. However, when testing for

such conditions, conventional cointegration tests assume a static (time-invariant) framework. If this
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assumption is invalid, cointegration may be falsely rejected, hence, it is important to allow for a time-

varying cointegration framework (where time invariance is a special case) will enriches the potential

interactions between variables when they are driven by the same information set.

In this paper we seek to identify the causal, cointegration, and price discovery processes between the

Bitcoin spot and futures markets, using a time-varying approach. The paper contributes to the current

and fast-growing literature on Bitcoin in several key ways. First, we apply a newly developed time-

varying Granger causality approach by Shi et al. (2018) to explore the causal relationship between spot

and futures markets for Bitcoin. There are many advantages of the new Granger causality approach, in

particular, it allows for unknown change points in the causal relationships and also takes accommodates

potential heteroskedasticity which is typically ignored in the existing literature. This new testing

procedure also does not require detrending or differencing of the data. Of particular interest here is

that this new approach allows practitioners to identify the origination and termination dates for any

episodes of causality. This new approach will be used here to study the lead-lag relationship between

spot and futures markets. Second, the paper tests for potential cointegration under the time-varying100

cointegrating coefficient assumption using the Park & Hahn (1999) test. Previous literature on this

topic takes no account of the possibility of a time-varying cointegrating coefficient. The reason why

the cointegration coefficient is considered to be time-varying is consistent with the argument stated by

Shi et al. (2019). In particular, Park & Hahn (1999) point out that since the cointegration reveals the

long-run relationship between variables, it can not be ruled out that such relationship does not hold

still throughout a long sample path given the possibility of the changing conditions of both macro and

micro fundamental drivers pertaining to market operations and regulatory circumstances. Third, the

paper also fills the gap of measuring price discovery in the spot and futures markets for Bitcoin by using

time-varying approaches for the first time. As discussed above, current empirical studies investigate

price discovery using the static (time-invariant) information share methodology. Fourth, this paper

enriches the literature on empirical analysis for Bitcoin futures markets by correctly specifying the

underlying spot prices for the CBOE and CME futures markets. We suggest that future research uses

the correct pair of spot-futures prices for subsequent analysis. In this paper we therefore address the

following three important questions from a time-varying perspective:

• Do futures prices Granger cause spot prices, or vice versa?

• Do futures prices cointegate with spot prices?

• Do futures prices lead spot prices in the price discovery process, or vice versa?

The remaining parts of the paper are organized as follows. Section 2 describes the data and

econometric methods. Section 3 presents the empirical findings and Section 4 concludes.

6



2. Data and Method

2.1. Data

The CBOE and CME are the first two exchanges that have provided future contracts on Bitcoin.

For these two futures contracts prices, we exclude the first-week data from the first trading date to

avoid potential outlier data. We use the daily settlement price of the CBOE Bitcoin futures from 18

December 2017 to 16 June 2019.3 We use the final settlement value (with a symbol of XBTS) based on

Gemini auction price at 4 pm Eastern time as the spot prices for the CBOE market.4 We also obtain

the daily settlement price of the CME Bitcoin futures from 25 December 2017 to 29 July 2019. The

CME Bitcoin future prices are based on the CME Bitcoin Reference Rate (BRR), which is used as a

spot price for the CME market. BRR is a daily reference rate of the U.S. dollar price of one Bitcoin

and developed by CME. The BRR aggregates the trade flows from the major Bitcoin spot exchanges,

for example, Bitstamp, Coinbase, itBit and Kraken at 4 pm London time to ensure transparency and

replicability in the underlying spot markets.5 To construct the CBOE and CME futures price series,

we only collect daily price observations of the most nearby futures contracts to ensure their liquidity.

The most nearby contracts are the ones that are closest to the expiration dates at each calendar month.

We switch the most nearby contract to the second most nearby one if the trading volume of the former

is exceeded by the latter at the former’s contract month.

The Gemini auction price and the BRR are used for representing the spot markets under consid-

eration in this paper.6 To align with the futures prices of Bitcoin, we then obtain the daily Gemini

auction price and the BRR for the same period with the CBOE and CME futures. After matching

the spot and futures data series, we end up with 416 observations for the CME sample and 393 obser-

vations for the CBOE sample. Note that our sample excludes data of weekends due to unavailability

of database. Both spot and future prices are downloaded from Thomson Reuters Datastream for our

empirical analysis. It should be pointed out that the futures and spot prices used by the CBOE and

CME are different. Hence empirical analysis should be based on the counterpart spot markets.

All spot and futures prices are transformed into natural logarithms and are presented as Figure 1.

As can be seen from the figure, there is a decreasing trend for both spot and futures prices from the

beginning of sample period until the early February 2019, which might represent a bear market in

3More details related to the CBOE Bitcoin futures can be assessed by the website cache at https://cfe.cboe.com/cfe-

products/xbt-cboe-bitcoin-futures/contract-specifications.
4Gemini is a digital currency exchange that founded in 2014.
5More details about the CME Bitcoin futures can be found from the CME website at

https://www.cmegroup.com/education/bitcoin/cme-bitcoin-futures-frequently-asked-questions.html.
6For a discussion of the choice of spot and futures data, see Baur & Dimpfl (2019).
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both the spot and futures markets. From early February 2019, both prices follow an upward trend

until the end of sample period, which suggests a bull market. Second, the patterns of both spot and

futures prices look similar. It is possible that there exists a long run relationship between spot and150

futures prices. This will be further examined via cointegration testing.

We also provide the descriptive statistics of the Bitcoin spot and futures daily returns in Table 2.

As can be seen from the table, the means of spot and futures returns are negative. The volatilities of

the four markets are similar. Second, returns of the four markets do not follow a normal distribution

as indicated by Jarque-Bera test. This might be due to non-zero skewness and excess kurtosis, which

will be further examined in a SNP approach. Finally, heteroscedasticity may exist in the spot and

futures returns given the existence of significant Ljung-Box Q statistics. This issue will be addressed

by using a DCC-GARCH modeling approach.

(a) CBOE futures

8.0

8.4

8.8

9.2

9.6

10.0

IV I II III IV I II

2018 2019

CBOE Futures

(b) Gemini auction price
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8.8

9.2

9.6
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IV I II III IV I II III

2018 2019
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(c) CME futures
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(d) CME Bitcoin Reference Rate
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Figure 1: Time series plot of the CBOE futures prices, Gemini auction price, the CME futures prices and the CME

Bitcoin Reference Rate prices in natural logarithmic scale.
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Table 2: Descriptive statistics of the daily returns for spot and futures markets.

Gemini auction price CBOE futures BRR CME futures

Mean -0.0018 -0.0019 -0.0009 -0.0009

Median 0.0000 0.0000 -0.0004 0.0000

Std.Dev. 0.0470 0.0479 0.0476 0.0514

Skewness -0.1906 -0.1493 -0.0764 -0.3198

Kurtosis 6.4944 6.2973 7.1780 7.0927

JB 201.8147*** 179.0373*** 302.2371*** 296.7135***

LB2(12) 19.833*** 20.562* 89.033*** 51.658***

Daily returns are calculated as the first order differences of log daily prices. Std.Dev., standard

deviation. JB, the Jarque-Bera test statistic for normality. LB2(12) denote the Ljung-Box Q

test statistic for return squares up to lag order 12. *** denotes significance at the 1% level.

2.2. Method

2.2.1. Time-varying Granger causality tests

The following section is taken from Shi et al. (2018). We can write an unrestricted VAR(p) in

multi-variate regression format simply as:

yt = Πxt + εt, t = 1, . . . , T (1)

where yt=(y1t, y2t)
′
, xt = (1,y

′

t−1,y
′

t−2, . . . ,y
′

t−p)
′
, and Π2×(2p+1)=[Φ0,Φ1, . . . ,Φp]. Let Π̂ be the

ordinary least squares estimator of Π, Ω̂ = T−1
∑∑∑T

t=1 ε̂tε̂
′

t with ε̂t = yt− Π̂xt and X
′

= [x1, . . . ,xT ]

be the observation matrix of the regressors in Equation 1. In order to test the null hypothesis that y2t

does not Granger cause y1t, the Wald test for such restrictions can be denoted as:

W =
[
Rvec(Π̂)

]′ [
R

(
Ω̂⊗

(
X

′
X
)-1
)

R
′
]-1 [

Rvec(Π̂)
]
, (2)

where vec(Π̂) denotes the (row vectorized) 2(2p + 1) × 1 coefficients of Π̂ and R is the p × 2(2p + 1)

matrix. Each row picks one of the coefficients to set to zero under the non-causal null hypothesis.

There are p coefficients on the lagged values of y2t in Equation 1.

Following the recent bubble detection tests of Phillips et al. (2015), Shi et al. (2018) develop three

tests based on the supremum norm (sup) of a series of recursively evolving Wald statistics for detecting

changes in causal relationships using a forward recursive, a rolling window and a recursive evolving

algorithm. If the Ward statistic sequence exceeds its corresponding critical value, a significant change
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in causality is detected. The origination (termination) date of a change in causality is identified as the

first observation whose test statistic value exceeds (goes below) its corresponding critical values.

The Wald statistic obtained for each subsample regression over [f1, f2] with a sample size fraction

of fW (fW = f2 − f1 ≥ f0) is denoted by Wf2 (f1) and the sup Ward statistic is defined as:

SWf (f0) = sup
(f1,f2)∈Λ0,f2=f

{Wf2 (f1)} , (3)

where Λ0 = {(f1, f2) : 0 < f0 + f1 ≤ f2 ≤ 1, and 0 ≤ f1 ≤ 1− f0} for some minimal sample size f0 ∈

(0, 1) in the regressions. This is known as the recursive evolving procedure.

Let fe and ff denote the origination and termination points in the causal relationship, which are

estimated as the first chronological observation whose test statistic respectively exceeds or falls below

the critical value. The dating rules of the rolling and recursive evolving algorithms are given as:

Rolling : f̂e = inf
f∈[f0,1]

{f :Wf (0) > cv} and f̂f = inf
f∈[f̂e,1]

{f :Wf (0) < cv} ,

(4)

Recursive Evolving : f̂e = inf
f∈[f0,1]

{f : SWf (0) > scv} and f̂f = inf
f∈[f̂e,1]

{f : SWf (0) < scv} ,

(5)

where cv and scv are the corresponding critical values of the Wf and SWf statistics. For multiple

switches, the origination and termination dates are calculated in a similar fashion. As Shi et al. (2019)

suggest, the power of the recursive evolving and rolling window approaches are much higher than that

of the forward recursive testing procedure, and the recursive evolving algorithm offers the best finite

sample performance. Hence, we investigate the potential causal relationship using these two procedures

in this paper.

In estimating the bivariate VAR and implementing tests of Granger causality, the lag order is

selected using the Bayesian information criterion (BIC) with the maximum lag length 12. The minimum

window size f0 is set to 0.2. The critical values are obtained from a bootstrapping procedure with 499

replications. The empirical size is 5% and is controlled over a three-month period.

2.2.2. Measurement of Price Discovery

Let Yt be an n×1 vector of I(1) series and assume that there exist n−1 cointegrating vectors; that

is, Yt contains a single common stochastic trend (Stock & Watson, 1988). Then Yt can be specified in

the following vector error correction model (VECM) (Engle & Granger, 1987):

∆Yt = πYt−1 +

k∑
i=1

Ai∆Yt−i + εt, (6)
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where π = αβT . α and β are n × (n − 1) matrices with n − 1 non-zero eigenvalues. β contains

(n − 1) cointegrating vectors such that βTYt−1 consists of (n − 1) cointegrating equations. Each

column of α is comprised of adjustment coefficients. The covariance matrix of the error term is given

by Ω = E
[
εtε

T
t

]
, where E [.] is the expectation operator. Following Stock & Watson (1988) and

Hasbrouck (1995), Equation 6 can be transformed into the following vector moving average (VMA)

model:

∆Yt = Ψ(L)εt, (7)

Yt = Y0 + Ψ(1)

t∑
i=1

εi + Ψ∗(L)εt, (8)

According to the Engle-Granger representation theorem Engle & Granger (1987), Ψ(1) has the

following important properties due to the cointegrated unit-root series (De Jong, 2002; Lehmann,

2002):

βTΨ(1) = 0 and Ψ(1)α = 0. (9)

More importantly, Ψ(1)εt in Equation 8 represents the long run impact of innovations on the unit-

root series (Hasbrouck, 1995). This term is the major focus of different information share measures.

Hasbrouck Information (IS)

In Hasbrouck (1995), all the prices are equal in equilibrium because these series correspond to the

prices of the same security being traded in multiple markets. This would impose special restrictions

on cointegrating matrix β. That is, each of the pairwise cointegrating vector in β is (1, -1). Thus,

Equation 9 implies that the rows of Ψ(1) are identical. Let ψ = (ψ1, ψ2, . . . , ψn) be the identical row

of Ψ(1). Then Ψεt represents the long-run impact innovations on each of the price series. Assuming

that the covariance matrix Ω is diagonal (i.e., the innovations are independent), the IS of market j is

defined as:

Sj =
ψ2
jΩjj

ψΩψT
, (10)

where ψj is the jth element of the row vector ψ. ψΩψT represents the variance of ψεt. It can be

decomposed as:

ψΩψT =

n∑
j=1

ψ2
jΩjj . (11)

Note that since ψεt represents the long-run impact of innovations on unit-root series, the IS of

market j is the proportion of variance of the long-run impact of innovations that is attributable to
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innovations of market j (Baillie et al., 2002). In other words, the IS of market j is the contribution of

market j to the total variance of the common efficient price or permanent impact (Lien & Shrestha,

2014). We can observe that ψΩψT consists of n terms in Equation 11. The first (last) represents the

contribution to the common factor innovation from the first (last) market (Baillie et al., 2002).

When the covariance matrix is not diagonal, that is, the innovations are not independent, the IS

of market j is given by Hasbrouck (1995),

Sj =
([ψF ]j)

2

ψΩψT
, (12)

where F is the Cholesky factorization of Ω and is the lower triangular matrix such that Ω = FFT .

[ψF ]j is the jth element of the row vector ψF . Due to the use of Cholesky factorization, Hasbrouck

(1995) considers the upper (lower) bound of series j’s information share when series j is the first (last)

variable in the factorization. That is, the upper (lower) bound of series j’s information share appears

when series j is the first (last) series in Yt. This is known as the ordering problem where the calculation

of IS using Equation 12 depends on the particular ordering of the series. Thus the IS measure of any

market is not unique.

In addition, Baillie et al. (2002) provide easy means to calculate the upper (lower) bound of a

market’s information share in an n-variate system. Let F = (fij)i,j=1,. . . ,n and γi be the element of

the row vector of αT⊥. The upper and lower bounds of the IS measure of each market j with 1 ≤ j ≤ n

are given as follows:

IS(UB)j =
[
∑n
i=1 γifi1]

2

[
∑n
i=1 γifi1]

2
+ [
∑n
i=2 γifi2]

2
+ · · ·+ [γnfnn]

2
, (13)

IS(LB)j =
[γnfnn]

2

[
∑n
i=1 γifi1]

2
+ [
∑n
i=2 γifi2]

2
+ · · ·+ [γnfnn]

2
. (14)

As can be seen in Equations 13 and 14, the upper bound incorporates the market’s own contribution

represented by f11 and its correlation with the other series as indicated by fi1(i = 2, . . . , n). The lower200

bound only takes account of the series’ ”pure” contribution that does not correlate with the other series

as represented by fnn. We can also observe that the higher the correlation, the greater (smaller) the

upper (lower) bound (Baillie et al., 2002).

Generalised Information Share (GIS)

Lien & Shrestha (2014) propose a new measure of information share to resolve the ordering problem

of Hasbrouck information share. The new measurement is called generalised modified information share

(GIS). GIS utilises a different factor structure that is based upon the correlation matrix of innovations

instead of the covariance matrix. The IS measures illustrated thus far depend on the special restrictions
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imposed on the cointegrating matrix β. That is, each of the pairwise cointegrating vectors in β is (1,-1),

which results in the rows of ψ(1) to be identical. However, this assumption is restrictive since the one-

to-one cointegrating relationship does not necessarily hold in the real world. Lien & Shrestha (2014)

propose a new IS measure that does not require the cointegrating vector of each pair of series to be

(1, -1). Therefore, such new measure can apply to series that do not have the one-to-one cointegrating

relationships between them.

Suppose that the cointegrating matrix β contains a diagonal matrix Γ(n−1) and an (n− 1) column

vector ι(n−1). Γ(n−1) = diag(θ1, θ2, . . . , θ(n−1)) and ι(n−1) = [1, . . . , 1]
T

. Then β can be represented

by:

βT(n−1)×n =
[
ι(n−1) : −Γ(n−1)

]
. (15)

Note that Equation 15 implies that Yt has (n− 1) cointegrating relationships; that is, Yt has a single

common stochastic trend. It is also worth noting that the cointegrating matrix given by Equations 15

has less restrictive condition than the one used to obtain the IS and MIS.

Combining with Equation 9, Equation 15 implies that the rows of Ψ(1) are not identical. Let ψgi

be the ith row of Ψ(1). Then the following relationship is obtained:

ψgi = θi−1ψ
g
i , i = 2, . . . , n. (16)

Thus the long-run impact of innovations on the ith series is:

ψgi εt = ψg1θ
−1
i−1εt, i = 1, . . . , n, (17)

where θ0=1 and ψgi is the first row of Ω(1).

When the innovations are independent, the variance of long-run impact on the ith series is:

Var(ψgi εt) = ψgi Ωψg
T

i =

n∑
j=1

ψ2
ijΩjj = θ−2

i−1

n∑
j=1

ψ2
1jΩjj , (18)

where ψij is the jth element of the row vector ψgi and ψ1j is the jth element of the row vector ψg1 .

The contribution of the innovation of series j to the total variance of the common factor of series i is

then represented by:

SGj,i =
ψ2

1jΩjj

ψg1Ωψg
T

1

, (19)

SGj,1 = SGj,2 = · · · = SGj,n, j = 1, 2, . . . , n. (20)
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SGj,i is so called generalised information share (GIS) of series j which is independent of i. When

the innovations are not independent, the GIS of series j can be calculated as:

SGj =

(
ψGj
)2

ψg1Ωψg
T

1

, (21)

where ψG = ψg1F
g, F g = F̂ =

[
GΛ−1/2GTV −1

]−1
, and ψGj is the jth element of ψG. It should be noted

that the GIS measure uses the factor structure same as the MIS; thus it would also be independent of

the ordering problem.

We can compute the time-varying IS and GIS measures which are conditioned on the past informa-

tion by replacing the time-invariant covariance matrix Ω of innovations used for calculating IS and GIS

measures with its conditional counterpart obtained with Equation 29. We assume that error correction

coefficients in Equation 6 are constant over the sample period in the calculation.

2.2.3. A time-varying cointegration test

Let St and Ft be the natural logarithms of daily prices of the spot and futures contacts, respectively.

If the two series are integrated at the same order, a potential cointegration relationship where the

cointegrating coefficient is time variant rather than static, is represented as:

St = β0 + β

(
t

n

)
Ft + ut, (22)

where β0 is a constant mean of the equation and ut denotes the error correction term. β
(
t
n

)
is the

time-varying cointegrating coefficient associated with
(
t
n

)
where t is the order of observation in the

sample and n denotes the sample size. We have β
(
t
n

)
= β(λ) such that λ ∈ (0, 1]. Hence β(λ) is a

smooth function defined on [0,1]. According to Park & Hahn (1999), the time-series parameters, β(λ),

are approximated by the Fourier flexible form (FFF) functions,

βk(λ) = αk,1 + αk,2λ+

k∑
i=1

(αk,2i+1, αk,2(i+1))ϕi(λ), (23)

where αk,j ∈ R2 for j = 1, 2, . . . , 2(k + 1), k is some positive integer. Let ϕi(λ)=(cos 2πiλ, sin 2πiλ).

We also assume that:

βk(λ) = f
′

k(λ)αk, (24)

where fk(λ) = (1, λ, ϕ
′

1(λ), ,̇ϕ
′

k(λ))
′

and αk = (αk,1, αk,2, ,̇αk,2(k+1))
′
.

Therefore, Equation 22 can be written as:

St = β0 + α
′

kFkt + ukt, (25)
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where Fkt = fk(λ)Ft, and ukt = ut + [β(λ)− βk(λ)]Fkt.

Park & Hahn (1999) employ the superfluous regression approach to test the null hypothesis of

the time-varying coefficient cointegration against the alternative of the spurious regression with non-

stationary innovations. The corresponding test statistic is defined as:

τ1 =
RSSTV C −RSSsTV C

ω2
∗

, (26)

where RSSTV C and RSSsTV C are the sum of squared residuals from the CCR regression for Equation 25

and the same regression augmented with s additional superfluous regressors, respectively. Under the

null hypothesis of a time-varying cointegration model, the limit distribution of τ1 is a Chi-square

distribution with s degree of freedom.

Alternatively, the null hypothesis of the validity of the time-invariant coefficient cointegration

model, that is, β
(
t
n

)
in Equation 22 is static over time, is tested by the test statistic as below:

τ2 =
RSSFC −RSSsFC

ω2
∗

, (27)

where RSSFC and RSSsFC are the sum of squared residuals from the CCR estimation of Equation 22

with the time-invariant cointegrating coefficient and the same regression augmented by s additional

superfluous regressors, respectively. The limit distribution of τ2 is the Chi-square distribution with s

degree of freedom under the null. Moreover, the null hypothesis of the time-invariant cointegration

model against the alternative of the time-varying model is tested with the null hypothesis H0 : αk,2 =

αk,3. . . = αk,2(k+1) = 0 in Equation 25 for a specific k.7 The test statistic follows a Chi-square

distribution with degree of freedom equal to the number of restrictions.

2.2.4. DCC-GARCH

To accommodate the time-varying second moments of return distribution, we use the Dynamic-

Conditional-Correlation (DCC) BGARCH model proposed by Engle (2002) to model the conditional

variance-covariance matrix of innovations of Equation 6. It should be noted that the conditional

variance-covariance matrix underlie the calculation of time-varying information share measures. The

7In this paper, following the literature, we choose s to be 4. In addition, we choose k from a range between 1 and 5.

The optimal k is picked based on the adjusted R-square of CCR.
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DCC-BGARCH(1,1) model maybe written as:

εt ∼ F (0, Ht) (28)

Ht = DtRtDt (29)

Dt = diag
{√

h11,t,
√
h22,t

}
(30)

hii,t = ω
′

i0 + ω
′

i1ε
2
i,t−1 + ω

′

i2hii,t−1, i = 1, 2, (31)

Rt = (diag {Qt})−1/2
Qt

(
diag {Qt}−1/2

)
, (32)

Qt = (1− δ1 − δ2)Q̄+ δ1ut−1u
′

t−1 + δ2Qt−1, (33)

Qt =

q11,t q12,t

q21,t q22,t

 , (34)

where ut = (u1t, u2t)
′

is a 2 × 1 vector of standardised residuals denoted by uit = εit√
hii,t

(i = 1, 2).

hii,t is a standard individual GARCH process. Qt is a 2 × 2 symmetric matrix where q11,t and q22,t

denote the conditional variances of standardised disturbances u1t and u1t at time t, respectively.

q12,t and q21,t is the conditional covariance between u1t and u1t at time t. Q=E
[
utu

′

t

]
is a 2 × 2

unconditional variance-covariance matrix of ut. δ1 and δ2 are scalar parameters, and δ1 ≥ 0, δ2 ≥ 0,

and δ1 + δ2 ≤ 1 guarantee positive definiteness of the conditional variance–covariance matrix Qt

during the optimisation. δ1 measures the presence of the conditional correlation and δ2 examines the

persistence of the time-varying nature.

Most of the applications of BGARCH models for estimating the optimal hedge ratio assume that250

error terms follow a bivariate conditional normal distribution. Bollerslev & Wooldridge (1992) show

consistency and asymptotic normality of the quasi-maximum likelihood estimator (QMLE) of the

GARCH model. However, QMLE will lose a lot of efficiency if the underlying conditional distribution

is not normal (Engle & Gonzalez-Rivera, 1991; Park & Jei, 2010). Such efficiency loss might affect

the forecasting of optimal hedge ratio based on the GARCH model estimated by QMLE. Typical

distributional features the financial time-series data are excess kurtosis and asymmetry. In many

applications of the GARCH model it is well known that conditional normality is not enough to explain

excess kurtosis and asymmetry in financial data (Park & Jei, 2010).

In this paper, we employ a semi-nonparametric (SNP) approach to address the issue of excess

kurtosis and non-zero skewness in the marginal return distribution. The DCC GARCH model is esti-

mated via the maximization of log-likelihood of the multivariate SNP density function. In particular, a

two-step estimation procedure is applied to obtaining estimates for the individual GARCH processes,

conditional correlation matrix and marginal skewness and kurtosis parameters. First, the individual
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conditional variance equations are estimated via QMLE assuming Gaussian distribution and standard-

ized innovations are obtained. Second, the parameters that capture the conditional correlation and

other higher order moments are obtained via the log-likelihood maximization over the whole sample.

The log-likelihood of the multivariate SNP density that each observation at time t contributes to,

without unnecessary constant components, is shown as:

log(SNP) = −1

2
log(Rt)−

1

2
u

′

tR
−1
t ut + log

{
2∑
i=1

ω−1
i ψ2

i (xit)

}
; (35)

ψi(xit) = 1 + si(x
3
it − 3xit) + ki(x

4
it − 6x2

it + 3); (36)

ωi = 1 + s2
i + k2

i ; (37)

xt = (x1t, x2t)
′

= R
−1/2
t ut, (38)

where i = 1, 2. Rt is conditional correlation matrix defined by Equation 32. ut is a vector of standard-

ized innovations of the DCC-GARCH model. si and ki (i = 1, 2) are marginal skewness and kurtosis

parameters, respectively.

3. Results

3.1. Time-varying Granger causality

We undertake ADF and PP unit root tests to check the stationarity of log futures and spot prices

and conclude that all variables are I(1).8 As suggested in Shi et al. (2019), we conduct the analysis

based on a VAR model that allows for possibly integrated data, and set the lag addition parameter d

to unity.

We first concentrate on the CBOE market and test for any causal effects from the Gemini auction

price (spot prices) to the CBOE futures prices. The time-varying Wald test statistics for causal effects

from Bitcoin spot prices to CBOE futures prices along with their bootstrapped critical values are

shown in Figure 2. These two rows illustrate the sequences of test statistics obtained from the rolling

window and recursive evolving procedures respectively, while the columns of the figure refer to the

two different assumptions for the residual error term (homoskedasticity and heteroskedasticity) for

the VAR. Sequences of the test statistics start from April 2018. Under different model and error

assumptions in Figure 2, the test statistics of the predictive power of spot prices on the CBOE futures

prices are always below their bootstrapped critical values, suggesting there is no evidence to reject

the null hypothesis of no Granger causality in all cases. As a result, date-stamping results from

8Unit root results are not shown here to save space. They are available upon request.
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Figures 2a, to 2d suggest that spot prices cannot predict the CBOE futures prices, i.e., there is no

causal relationship running from spot prices to the CBOE futures prices in all cases.

(a) Rolling Window-Homoskedasticity (b) Rolling Window-Heteroskedasticity

(c) Recursive Evolving-Homoskedasticity (d) Recursive Evolving-Heteroskedasticity

Figure 2: Tests for Granger causality running from the Gemini auction price (spot prices) to CBOE future prices (d=1).

We then consider the causal effects from the CBOE futures prices to spot prices as shown in

Figure 3. First, there is little evidence of causality episodes based on the rolling window procedure as

presented in Figures Figures 3a and 3b. Second, the recursive evolving approach offers some different

results. As shown in Figure 3c, we find significant evidence of causality episodes running from the

CBOE futures prices to spot prices from August 2018 to June 2019 as the test statistic exceeds the

critical value sequences in August 2018 until the closure of the CBOE Bitcoin futures market in June

2019. As a result, the null hypothesis of no Granger causality can be rejected. Similarly, under the
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error assumption of heteroscedasticity, Figure 3d also presents significant evidence to support that the

CBOE futures prices do Granger cause spot prices from November 2018 to June 2019. As noted in

Shi et al. (2018), the recursive evolving window algorithm provides the most reliable results. Hence,

we are confident in concluding that the CBOE futures prices Granger cause spot prices from August

2018/ November 2018 to the end of the CBOE futures market in June 2019.

(a) Rolling Window-Homoskedasticity (b) Rolling Window-Heteroskedasticity

(c) Recursive Evolving-Homoskedasticity (d) Recursive Evolving-Heteroskedasticity

Figure 3: Tests for Granger causality running from the CBOE future to the Gemini auction price (spot prices) (d=1).

As stated above, the spot and futures prices of the CME are different from of those used for the300

CBOE. The conclusions drawn for the CBOE market do not necessarily hold for those of the CME

market. Next, therefore, we carry out an analysis using the CME futures prices and CME BRR to

explore the causal relationship between futures and spot markets with the results presented as in
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Figure 4 and Figure 5. Figure 4 considers causality running from spot prices to the CME futures

prices. As shown in Figure 4, we find quite similar results based on different testing procedures

and error assumptions. For example, when we look at the date-stamping outcomes in Figure 4a and

Figure 4b, the rolling window approach identifies an episode of causality between March 2019 and June

2019 under two error assumptions. When the recursive evolving procedure is applied as in Figure 4c

and Figure 4d, we also identify an episode of causality from March 2019 to July 2019. Based on the

above results, we can conclude that spot prices Granger cause the CME futures prices from March

2019 to June/July 2019.

(a) Rolling Window-Homoskedasticity (b) Rolling Window-Heteroskedasticity

(c) Recursive Evolving-Homoskedasticity (d) Recursive Evolving-Heteroskedasticity

Figure 4: Tests for Granger causality running from the BRR (spot prices) to CME futures prices (d=1).

Finally, we conduct an analysis of Granger causality running from the CME futures to spot prices.
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(a) Rolling Window-Homoskedasticity (b) Rolling Window-Heteroskedasticity

(c) Recursive Evolving-Homoskedasticity (d) Recursive Evolving-Heteroskedasticity

Figure 5: Tests for Granger causality running from the CME futures to the BRR (spot prices) (d=1).

Interestingly, we obtain significant evidence to reject the null of no causality from the CME futures

to spot prices as presented in Figure 5. The rolling window approach finds an episode of causality

between April 2018 and March 2019 in Figure 5a and Figure 5b with some small breaks. What is even

more interesting is that the recursive evolving approach identifies an episode of causality for the whole

period between April 2018 and July 2019 as shown in Figure 5c and Figure 5d. It is clear that our

results are robust to different error assumptions. As the recursive evolving approach has higher power

over the rolling window approach, we prefer the results obtained from the recursive evolving approach.

Our results, therefore, suggest that the CME futures prices lead spot prices in the short term within

the context of time-varying Granger causality.
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The results from time-varying Granger causality tests present some very important findings. The

key results for the CBOE and CME markets are summarzied as follows:

• CBOE market

1. There are no causality episodes running from the Gemini auction price (spot prices) to the

CBOE futures prices;

2. The recursive evolving approach detects an episode (August/November 2018-June 2019)

running from the CBOE futures prices to spot prices;

3. Overall, the CBOE futures market dominates the spot market in terms of causality from

August/November 2018 to June 2019.

• CME market

1. There is a causality episode running from the BRR (spot prices) to the CME futures prices

(March 2019-June/July 2019);

2. The rolling window approach detects an episode (April 2018-March 2019) and recursive

evolving approach detects an episode (April 2018-July 2019) running from the CME futures

prices to spot prices;

3. There is bi-directional causal relationship between spot price and the CME futures prices;

4. Compared with duration of causal episodes and the magnitude of the test statistics in

Figure 4 and Figure 5, the CME futures market dominates the underlying spot market in

terms of causality.

3.2. Time-varying cointegration

(a) Time-varying cointegration coefficient βCBOE
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(b) Time-varying cointegration coefficient βCME
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Figure 6: Time-varying cointegration coefficient β between spot and futures markets (CBOE and CME).
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We employ Park & Hahn’s (1999) procedure to test for the existence of cointegration permitting a

time-varying cointegrating coefficient. We present the movements of the time-varying cointegration co-

efficients between the futures and spot markets in Figure 6. The time-varying cointegration coefficients

of βCBOE and βCME for the two futures markets are shown as Figure 6a and Figure 6b, respectively.

It seems that the patterns of βCBOE and βCME are both non-linear and time-varying during the entire

sample period.

We next present cointegration test results based one CBOE market of Park & Hahn (1999) in

Table 3. As shown in Panel A of Table 3, we cannot reject the null hypothesis of a time-varying

cointegration model as the p-value of τ1 statistic is 0.1091, indicating a cointegration relationship under350

time-varying coefficients between the spot and CBOE futures markets. However the null hypothesis

of the validity of the time-invariant coefficient cointegration model can be rejected as the p-value of

τ2 statistic is 0. Results from τ2 provide the further support for a time-varying cointegration model.

Alternatively, the null hypothesis of the time-invariant cointegration model against the alternative of

the time-varying model is also tested with the null hypothesis H0 : αk,2 = αk,3. . . = αk,2(k+1) = 0

when k=8.9 The result from Panel A provides significant evidence to support a time-varying model as

the p-value of a Chi-square statistic χ2(2k+1) is 0. We, therefore, prefer the time-varying cointegration

model rather than the time-invariant cointegration model.

We also obtain the similar result from Panel B of Table 3 for the CME markets. The null hypothesis

of a time-varying cointegration model is not rejected as the p-value of τ1 statistic is 0.3515, suggesting a

cointegration relationship under time-varying coefficients between the spot and CME futures markets.

On the other hand, the p-value of τ2 statistic is 0, rejecting the null hypothesis of the time-invariant

coefficient cointegration model. The results from τ2 are in line with τ1. The time-varying model

is preferred over the time-invariant cointegration model for the CME futures markets as the Chi-

square statistic χ2(2k + 1) is significant at the 1% level.10 Overall, we prefer to apply a time-varying

cointegration model between Bitcoin spot and futures markets due to significant evidence as suggested

by Table 3.

3.3. Time-varying Price Discovery

Results for the static (time-invariant) price discovery measures are summarised in Table 4. With

respect to price discovery of the CBOE futures and spot markets in Panel A, the IS (upper bound,

9k is chosen to be 8 for the Park and Hahn test since it generates the highest adjusted R-square of the CCR under

the null hypothesis. We also test the null when k is 1, 2, 3, . . . , 8 and find the results are qualitatively similar. We also

try alternative choices for the equality test.
10In the test for the CME futures, the optimal value of k is chosen to be 1.
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Table 3: Cointegration test under time-invariant and time-varying

coefficients.

Panel A: CBOE futures p-value

Time-varying coefficient

τ1 Pτ1 : 0.1091

Time-invariant coefficient

τ2 Pτ2 : 0.0000***

H0 : αk,2 = αk,3 = · · · = αk,2(k+1)

χ2(2k + 1) Pχ2(2k+1): 0.0000***

Panel B: CME futures p-value

Time-varying coefficient

τ1 Pτ1 : 0.3515

Time-invariant coefficient

τ2 Pτ2 : 0.0000***

H0 : αk,2 = αk,3 = · · · = αk,2(k+1)

χ2(2k + 1) Pχ2(2k+1): 0.0000***

This table presents results of Park & Hahn (1999) test.

τ1 and τ2 are calculated by Equation 26 and Equation 27,

respectively. k in Panel A refers to the number of pairs of

trigonometric polynomial functions in Equation 23. ***

denotes significance at the 1% level.

Table 4: The static (time-invariant) estimates of price discovery measure for Bitcoin spot and two

futures markets.

Panel A IS Measure GIS Measure

Upper Bound Lower Bound Mid-point

CBOE futures 0.9980 0.0077 0.5029 0.5216

Spot 0.9924 0.0020 0.4972 0.4784

Panel B IS Measure GIS Measure

Upper Bound Lower Bound Mid-point

CME futures 0.9540 0.0926 0.5233 0.5464

Spot 0.9074 0.0460 0.4767 0.4536
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(a) Time-varying IS measure of the spot markets
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(b) Time-varying IS measure of the CBOE futures markets.
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(c) Time-varying IS measures of mid point.
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(d) Time-varying GIS measures of the spot and CBOE fu-

tures markets.
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Figure 7: Time-varying IS and GIS measures of Bitcoin spot and CBOE futures markets.

lower bound and mid-point) and GIS measures of the CBOE futures are higher than those of spot

markets. Hence, price discovery takes place in CBOE futures market rather than Bitcoin spot market.

It should be pointed out that the CBOE futures market dominates the price discovery process. We

then look at the results for the CME futures market in Panel B. It is clear that the IS (upper bound,

lower bound and mid-point) and GIS measures of the CME futures are higher than those of spot

markets, indicating that the CME futures market outperforms in terms of static information shares

price discovery. In general, Table 4 suggests that both CBOE and CME futures markets lead the

Bitcoin spot market. This finding is consistent with the results of time-varying Granger causality

approaches reported in Section 3.1.

25



Table 5: The time-varying estimates of price discovery measure for spot and two futures markets.

Panel A Mean Sd Max Min

IS Measure

CBOE futures

Upper Bound 0.9977 0.0014 0.9995 0.9840

Lower Bound 0.0087 0.0054 0.0643 0.0014

Mid-point 0.5032 0.0020 0.5241 0.5004

Spot

Upper Bound 0.9913 0.0054 0.9986 0.9357

Lower Bound 0.0023 0.0014 0.0160 0.0005

Mid-point 0.4968 0.0020 0.4996 0.4759

t-test of equality between mid

point of the two markets

t-test p-value

43.9975 0.0000

CME futures

Upper Bound 0.9544 0.0056 0.9709 0.9277

Lower Bound 0.0934 0.0118 0.1888 0.0696

Mid-point 0.5239 0.0064 0.5738 0.5110

Spot

Upper Bound 0.9066 0.0118 0.9304 0.8112

Lower Bound 0.0456 0.0056 0.0723 0.0291

Mid-point 0.4761 0.0064 0.4890 0.4262

t-test of equality between mid

point of the two markets

t-test p-value

105.6303 0.0000

Panel B Mean Sd Max Min

GIS Measure

CBOE futures 0.5222 0.0058 0.5645 0.5077

Spot 0.4778 0.0058 0.4923 0.4355

t-test of equality between mid

point of the two markets

t-test p-value

105.9086 0.0000

CME futures 0.5475 0.0110 0.6214 0.5207

Spot 0.4525 0.0110 0.4793 0.3786

t-test of equality between mid

point of the two markets

t-test p-value

122.0624 0.0000
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(a) Time-varying IS measure of the spot market
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(b) Time-varying IS measure of the CME futures market.
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(c) Time-varying IS measures of mid point.
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(d) Time-varying GIS measures of the spot and CME futures

markets.
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Figure 8: Time-varying IS and GIS measures of Bitcoin spot and CME futures markets.

Results of the time-varying price discovery measures are summarised in Table 5. As can be seen

from Panel A, the mean, maximum and minimum estimates of upper bound, lower bound and mid-point

of the IS measures for the CME futures are higher than those of spot markets. Similarly, the CBOE

futures market outperforms the spot market in terms of conditional information shares as the mean,

maximum and minimum estimates of upper bound, lower bound and mid-point of the IS measures

for the CBOE futures market are also higher than those of the spot market. Hence, conditional IS

measures suggest that price discovery mainly takes place in the Bitcoin futures markets, rather than

spot counterpart. The results are consistent with static measures. In addition, standard deviations of

the IS measures for the spot and futures markets are small, indicating that those measures are stable
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over the entire sample period. Results for the conditional GIS of Bitcoin spot and futures are shown

in the Panel B of Table 5. The GIS results are similar to the IS measures of Panel A. Moreover, the

GIS measures are stable given their small standard deviations. In addition, we test the equality of

means of the conditional mid-point IS and that of conditional GIS between Bitcoin spot and futures

markets. The t statistics are all significant for the IS and GIS measures, for both the CBOE and CME

cases. The results indicate that the differences in dynamic price discovery performance between Bitcoin

futures and spot markets are substantial, which confirms a leading role the futures markets play in

the long-run information channels. Overall, both the CBOE and CME futures markets have higher

means of the GIS than the spot counterpart, indicating that the Bitcoin futures markets dominate in

the dynamic price discovery process.

Furthermore, the time-varying IS and GIS measures of the Bitcoin spot and two futures markets are

depicted in Figure 7 and Figure 8, respectively. As shown in both figures, the values of the conditional400

series of the IS and GIS measures for futures markets are higher than those of the spot markets across

time, which is consistent with the results of Table 6. We can, therefore, conclude that the Bitcoin

futures markets dominate the dynamic price discovery process based upon time-varying information

share measures. Overall, price discovery seems to occur in the Bitcoin futures markets rather than

the underlying spot market based upona time-varying perspective, which is consistent with results

obtained from the static (time-invariant) information share measures in Table 4.

The estimation result of the DCC-GARCH model with SNP approach is shown in Table 6. The

model estimates are used to predict the conditional variances and covariances of Bitcoin spot and

futures markets which determines conditional IS amd GIS measures. As can be seen from Panel A of

the table, volatility clustering exists in all the markets, where the individual variances are driven by

the arrival of new shocks. In addition, persistency of variances is significant for all four markets.

Panel B of Table 6 suggests that correlation between the Bitcoin spot and futures markets is

conditioned on the past shocks as well as their own lagged values, given the significant estimates of δ1

and δ2. Moreover, the SNP approach significantly captures the excess kurtosis of return distribution.

Skewness parameters are estimated, but none of them are significant. It suggests asymmetry of the

distribution might not be a significant obstacle for model estimation. Finally, Panel D of Table 6

shows that there is no heteroscedasticity remaining in the standardised innovations, suggesting the

entire model is now well specified.
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Table 6: The DCC-GARCH-SNP model.

CBOE CME

Coefs.

Panel A: Conditional variances i=1 i=2 i=1 i=2

ω
′
io 7.74 × 10−5 4.69 × 10−5 7.74×10−5*** 0.0001***

(0.1222) (0.1011) (0.0000) (0.0002)

ω
′
i1 0.0291** 0.0158* 0.0561*** 0.0536***

(0.0453) (0.0637) (0.0000) (0.0000)

ω
′
i2 0.9321*** 0.9577*** 0.8883*** 0.8765***

(0.0000) (0.0000) (0.0000) (0.0000)

Panel B: Conditional correlation

δ1 0.1474*** 0.0170**

(0.0000) (0.0426)

δ2 0.6779*** 0.8380***

(0.0000) (0.0000)

Panel C: SNP distribution

s1 -0.4167 0.1794

(0.3509) (0.5803)

s2 -0.106947 -0.1459

(0.7902) (0.6388)

k1 4.9499 5.6004*

(0.1318) (0.0807)

k2 5.8634 4.6873*

(0.1729) (0.0567)

Panel D: Residual diagnosis

LB2(12) 2.5025 2.0816 3.4686 4.9499

ARCH(12) 2.4730 2.0478 3.5544 4.9175

Notes: This table reports the estimation results of the bivariate DCC-GARCH-SNP model

based upon Equation 29 to Equation 34. Coefs. denotes coefficients. i=1 refers to the

conditional variance equation of Bitcoin spot markets (Gemini auction price or BRR) while

i=2 refers to the conditional variance equation of Bitcoin futures markets (CBOE or CME).

LB2(12) is the Ljung-Box Q statistics of squared standardised residuals up to lag order 12.

ARCH(12) denotes the test statistic for testing the ARCH effect up to lag order 12. Figures

in the parentheses are p-values. ***, **, and * denote significance at the 1%, 5% and 10%

levels, respectively.
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4. Conclusion

This paper investigates the existence of causal relationships, cointegration and price discovery

between Bitcoin spot and futures of the CBOE and CME from December 2017 to June/July 2019

from a time-varying perspective for the first time in the literature.

Of particular importance from the results of this paper is that we offer more robust evidence to

support our key findings. This paper presents three important findings as follows. First, the results

from a recently proposed time-varying Granger causality test of Shi et al. (2018, 2019) suggest that the

CBOE and CME futures prices Grange cause the underlying spot markets. For the CBOE market, the

CBOE futures prices Granger cause spot prices between August/November 2018 and June 2019 based

on the recursive evolving testing procedure. However, there are no causality episodes running from

spot prices to the CBOE futures prices. For the CME market, there is a causality episode running from

spot prices to the CME futures prices (March 2019-June/July 2019) using both rolling window and

recursive evolving testing procedures. The rolling window approach detects an episode (April 2018-

March 2019) and recursive evolving approach detects an episode (April 2018-July 2019) running from

the CME futures prices to spot prices. There is a bi-directional causal relationship between spot price

and the CME futures prices appears to exist. Compared with the duration of the causal episodes and

the magnitude of the test statistics, the CME futures market appears to dominate the underlying spot

market in terms of causality. Second, using the test of Park & Hahn (1999), we cannot reject the null

hypothesis of a time-varying cointegration model allowing for time-varying cointegrating coefficients

between the spot and two futures markets. Our results suggest that the time-varying cointegration

model is preferred over the time-invariant (fixed) cointegration model. In other words, the time-

varying cointegration model is better suited to describe the relationship between spot and futures

markets. Third, we also find that Bitcoin futures markets dominate the price discovery process using

a time-varying version based on information share measures of the IS and GIS types. Both the two

information share measures indicate that price discovery takes place in the Bitcoin futures markets,

rather than the spot market. Overall, these results indicate that the Bitcoin futures markets provide

their functionality as expected, in terms of informational efficiency. The futures contracts can be an

efficient tool for risk management of the underlying spot asset. Hence, our results deliver important

implications for market participants and regulators.
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