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Abstract 

 

Cost efficiency analysis has not been widely applied in the dairy industry, despite its role in 

driving profitability, resilience and debt serviceability in low subsidy export-oriented farming 

systems. We analyse cost efficiency using operating profit margin (a reliable, well-supported 

and easily interpretable parameter from the DuPont framework) for the first time on New 

Zealand dairy farms. We utilise a 10-year panel dataset, developed using sample and population 

data, to get a representative picture of the industry. We begin by grouping farms into quartiles 

of their long-run cost efficiency (10-year average) and perform non-parametric Games-Howell 

hypothesis testing to investigate differences in the groups. We then estimate a fixed effects 

panel regression model for each quartile to examine the factors correlated with cost efficiency 

over time within low to high performing groups. We find cost-efficient farms use less 

supplement and nitrogen fertiliser over the long run, milk price fluctuations disproportionately 

impact lower quartile groups, and farms may be able to reduce GHG emissions whilst 

maintaining strong cost efficiency. Our exercise demonstrates that analysing cost efficiency 

using operating profit margin can produce valuable insights for low subsidy export-oriented 

agricultural industries. 
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I. Introduction  

The low subsidy, export-orientated agriculture sectors of Australasia must strive for efficiency 

to compete in international markets. Indeed, understanding the fundamentals of profitability is 

more important than ever, as Australasian farms are subject to stricter environmental standards, 

and heightened business risks such as price volatility and high levels of debt. Cost efficiency 

is the ability to produce a given level of revenue at the lowest cost (Jiang and Sharb, 2014). 

Cost efficiency has been identified as a crucial factor in achieving profitability and resilience 

on New Zealand dairy farms (Neal et al., 2018). Shadbolt et al. (2018) show that cost efficiency 

also improves a farms ability to service and reduce debt. Additionally, cost efficiency is a 

simple measure of farm performance, which can easily be calculated and interpreted by a farm 

manager. By building knowledge of drivers of cost efficiency across farms, managers can be 

supported to improve the profitability of their farms. However, there has been little research 

conducted on cost efficiency for New Zealand farms. 

Thus, we conduct an analysis on drivers of cost efficiency for New Zealand dairy farms. 

This industry provides an excellent case study of how cost efficiency analysis can contribute 

to understanding competitiveness and profitability in a low subsidy, export-oriented agriculture 

sector. We take advantage of a novel, 10-year balanced panel data set for the dairy-focused 

region of Waikato and compare performance between and within low to high performing 

quartiles. The only other study of cost efficiency on New Zealand dairy farms that we are aware 

of is Jiang and Sharb (2014). They provide some useful insights, using an unbalanced panel 

data set, and a more complex stochastic cost frontier model. We build on their work by 

analysing cost efficiency with balanced panel data set and an easier cost-efficiency measure 

for farmers to understand and interpret.   

In this study, we use operating profit margin (OPM) as a measure of farm cost 

efficiency. OPM was originally derived from the DuPont formulation (1) and is operating profit 

(OP) divided by operating revenue (OR). It is one of the three parameters in the decomposed 

DuPont formulation (1) which describes return on equity (RoE). The other two parameters are 

asset turnover, OR divided by total assets (A), and the leverage ratio, A divided by total equity 

(E). It is widely acknowledged that OPM measures cost efficiency, asset turnover measures 

revenue efficiency and the leverage ratio describes the leverage and solvency of a business 

(Doole and Te Rito, 2019).  

RoE = 
OP

OR
·
OR

A
·
A

E
    (1) 

The DuPont formulation has been used extensively since its establishment in 1912 by 

the DuPont Corporation (Doole and Te Rito, 2019). The formulation is robust, globally applied 

and recognised as a useful tool for the dairy industry by pertinent stakeholders (Doole and Te 

Rito, 2019; Grashius, 2018). The formula for OPM is understandable and accessible to most 

farmers, rendering it a suitable and robust alternative to a stochastic cost frontier; which utilises 
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involved econometric formulations of cost functions (Jiang and Sharb, 2014). 

 

At a basic level, OP can be decomposed into operating revenue (OR) less operating 

costs (OC). This leads to the simplification that OPM is equal to 1 less a cost ratio (OC/OR). 

This demonstrates that if operating costs increase for a fixed level of revenue, the cost ratio 

(OC/OR) increases. Subsequently, the value of OPM falls, demonstrating that the farm is less 

cost-efficient because they produce the same level of revenue with a higher cost (refer to the 

earlier definition of cost efficiency). Conversely, if operating costs fall, OPM will increase, 

demonstrating an increase in cost efficiency.  

OPM = 
OP

OR
 = 

OR - OC

OR
= 1 - 

OC

OR
    (𝟐) 

The aim of this study is to comprehensively investigate factors correlated with cost 

efficiency through time over the long and short-run to produce valuable and interpretable 

insights for addressing challenges in dairy farming. We benchmark farms into quartiles, based 

on their long-term cost efficiency performance, and used Games-Howell tests to examine 

differences in farm variables between the groups. This indicates which farm variables are 

related to cost efficiency. Furthermore, we formulate a fixed effects (FE) panel regression 

model for each quartile to investigate the correlations between cost efficiency and pertinent 

farm variables (such as pasture and crop eaten, supplement costs and fertiliser costs) through 

time, whilst controlling for other relevant variables and farm-level effects.  

 

2. Literature Review 

2.1 Case study background 

New Zealand has an export-orientated dairy industry, exporting 95% of domestic dairy 

production to international markets (Barry and Patullo, 2020). This accounts for over 20% of 

New Zealand exports and 3% of GDP, making dairy the largest export industry for New 

Zealand (Barry and Patullo, 2020). Moreover, the industry is worth NZD $17 billion per annum 

(Ballingall and Pambudi, 2017). However, New Zealand makes up 3% of global production 

which categorises New Zealand as a price taker on the global market. In addition, the New 

Zealand dairy industry receives no subsidies from the government which increases exposure to 

market fluctuations and risk.  

Meanwhile, the industry faces several other challenges including addressing 

environmental concerns, heightened price fluctuations and high levels of indebtedness. New 

Zealand dairy farmers are under increasing scrutiny around the environmental impacts of their 

farming practices. Farmers are developing action plans in concordance with The Action for 

Healthy Waterways and The Sustainable Dairying Water Accord (MFE & MPI, 2020). 

Moreover, the government has an interim target to reduce biogenic methane emissions by 10%, 

below 2017 levels, by 2030 (MFE, 2019). Recent modelling from the Climate Change 
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Commission (2021) indicates, absent any new technological innovation, herd sizes need to fall 

by 15% (below 2018 levels) by 2030 to meet those targets. Hence, possible decreases in milk 

production (as herd size falls or farmers decrease their system intensity to manage their 

environmental impacts) and increases in compliance costs - associated with these new 

environmental regulations - pose a risk to profitability.  

Milk price and input price volatility present a threat to the stability of farm revenue and 

costs (Neal et al., 2018). This volatility greatly impacts the instability of farm profits and may 

necessitate the use of farm management strategies to mitigate against it (Neal & Roche, 2020). 

Finally, New Zealand farms have one of the highest levels of indebtedness worldwide (Doole 

and Te Rito, 2019). High debt levels on dairy farms can negatively impact productivity, 

resilience and profitability, as farms have less flexibility to respond to climatic, price and 

production shocks (Greig, 2010; Ma et al., 2020; Shadbolt et al., 2013). With these on-going 

pressures, and the need to compete internationally against subsidised agricultural sectors, it is 

important for the NZ dairy industry to continuously improve. 

 

2.2 OPM definition  

Within the dairy industry, OPM is given as (Doole & Te Rito, 2019): 

OPM=
Dairy Operating Profit

Dairy Gross Farm Revenue
    (𝟑) 

For dairy OP, interest repayments are added, and unpaid family labour is subtracted (to 

compare across farms with varying levels of debt and allocations of labour resources). The 

literature is somewhat divided on the interpretation of OPM; however, one interpretation is 

more appropriate to the context of this paper. Predominantly, OPM is described and used as a 

financial measure of cost efficiency and operating efficiency (Beca, 2020; Doole & Te Rito, 

2019; Grashuis, 2018; Ho et al., 2013; Pinochet-Chateau et al., 2005; Wolf et al., 2020). That 

is, the ability of a firm to minimise their costs of producing a given level of revenue. This 

definition is featured prominently in the literature for New Zealand dairy farms and is generally 

cited as a key driver of profitability (Beca, 2020; Doole & Te Rito, 2019; Ho et al., 2013). 

Alternatively, some authors have defined OPM as a measure of profitability itself (Hoppe, 

2014; Langemeier, 2016; Langemeier & Yeager, 2018; Snider & Langemeier, 2009; Uzea et 

al., 2014). This strand of the literature focuses on dairy farms in the U.S. - which exhibit large 

systematic differences to farms in New Zealand. As a result, this study operates on the premise 

that OPM measures cost efficiency - which is a driver of profitability.  

There are few studies in the literature which focus primarily on cost efficiency (Alvarez 

et al., 2008; Grashuis, 2018; Jiang & Sharb., 2014; Yeager, 2016). Only two studies that we 

are aware of are centred around OPM as the measure of cost efficiency (Grashuis, 2018; Wolf 

et al., 2020) and these studies are based on U.S. farms (Wolf et al., 2020) and U.S. farm 
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cooperatives (Grashuis, 2018). Research on cost efficiency for New Zealand farms has been 

limited to stochastic cost frontier analysis (Jiang & Sharb., 2014). Moreover, efficiency papers 

for New Zealand farms to date have predominantly focussed on technical efficiency (Ho et al., 

2013; Ma et al., 2018). Our work addresses this gap by providing deeper insights into cost 

efficiency, using OPM as a novel measure for New Zealand farms. 

2.3 OPM and benchmarking performance 

OPM is a practical tool that can be used to benchmark farms by financial performance 

(Langemeier & Yeager, 2018). OPM has the benefit of being a transferable benchmark, both 

globally and cross-industry, due to its widespread use and the robustness of the DuPont 

formulation (Doole & Te Rito, 2019). Despite this, most longitudinal benchmarking studies 

have used incomplete panel data, which inhibits analysis on how OPM varies at the farm-level 

with time (Jiang & Sharb., 2014; Ma et al., 2018). However, a novel study of farms in Kansas, 

U.S., used a complete panel to investigate how OPM varies with time (Wolf et al., 2020). They 

find that using a single year to benchmark farms is inaccurate and misrepresentative of the true 

relative financial performance of farms. This is consistent with previous work (Langemeier, 

2010, 2016; Mishra et al., 2012; Yeager et al., 2016) demonstrating that OPM is subject to 

external shocks and a central value ought to be taken to improve the accuracy of farm 

performance categorisation.  

Wolf et al. (2020) use a five-year farm average of OPM for benchmarking purposes. 

They decompose variation in OPM over time into three effects: the firm effect, the industry 

effect and an error term. However, the error term was the largest effect, which suggests future 

models need to be refined to include more detail. We build on the work of Wolf et al. (2020) 

by benchmarking farms and developing a fixed effects model for OPM which uses a complete 

10-year panel dataset and has a high degree of explanatory power. Furthermore, we perform 

robust Games-Howell hypothesis testing to investigate differences between the benchmarked 

groups. As far as we are aware, our work is the first time OPM and cost efficiency has been 

examined over time for New Zealand dairy farms, and even pasture-based dairy farming 

industries. 

2.4 Factors impacting OPM 

Snider and Langemeier (2009) find that OPM is positively correlated with farm size, which 

aligns with work done by Mishra et al. (2012). They also indicate that profitability is influenced 

by farm size. Both studies were done with U.S. farm data and directly contradict research by 

Beca (2020) who show that there was no relationship between farm size and profitability for 

Australian farms. However, Jiang and Sharb (2014) demonstrate that cost efficiency (using an 

alternative measure to OPM) increases with farm size and operator experience. However, U.S. 

farms operate on an intensive feedlot production system whilst New Zealand and Australian 

farms are predominantly pasture based. 
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Studies suggest that high OPMs may be associated with increased business risk within 

a dairy industry (Alvarez et al., 2008; Hedley and Kolver, 2016). Conversely, Pinochet-Chateau 

et al. (2005) show that farms with lower OPMs have greater financial risk measured by RoE - 

a generally accepted proxy for financial risk. This supports Gabriel and Baker’s (1980) notion 

that farms can substitute between business and financial risk. Consequently, risk preferences 

and attitudes will likely have an impact on OPM. This is corroborated by Yeager (2016), who 

shows that farm inefficiencies will be inaccurately exacerbated if risk preferences are not 

accounted for. Yeager (2016) uses a non-parametric approach to efficiency and there are no 

studies to our knowledge that account for risk when analysing farm OPMs.  

Generally, the literature agrees that OPM is positively correlated with profitability, 

measured by return on assets (RoA) or equity (RoE). This conclusion is expected, given the 

DuPont formulation formally relates these parameters (Beca, 2020; Grashuis, 2018; Ma et al., 

2018; Mishra et al., 2012). Adopting a different approach, Fairfield and Yohan’s (2001) find 

that OPM is uncorrelated with future profitability. 

Ma et al. (2018) finds that OPM fell with intensification and RoA was unchanged, 

Shadbolt (2012) states that there was no correlation between OPM and intensity and Ho et al. 

(2013) find that RoA (inherently linked to OPM) increases with intensification. These studies 

focus on pasture-based dairy farms. Mishra et al. (2012) find positive correlations between 

OPM and operator education, farm size and diversification. 

2.5 Risk attitude 

Dairy farming has uncertainty and is risk prevalent in many areas (such as production, 

marketing and financing). Consequently, farmers and analysts are interested in the sources of 

risk, how such risk is managed and how farmers’ risk preferences vary.  Pinochet-Chateau et 

al. (2005) show that OPM is negatively correlated with risk exposure. Other authors have 

shown that financial performance (cost efficiency is one example) is a key tool in managing 

farm risk (Bardhan et al., 2006; Flaten et al., 2005). Consequently, we would expect financial 

performance measures (such as OPM) to be correlated with risk attitude. Therefore, we include 

an indicator of risk attitude in our analysis of OPM. 

In agricultural literature, risk is often divided into two categories: financial risk and 

business risk. Financial risk relates to the capital structure of a farm and how it has been 

financed (Collins, 1985; Farina et al., 2013; Hardaker et al., 2004). Conversely, business risk 

can be defined as the aggregate remaining uncertainty relating to production, milk price, input 

prices and climate (Farina et al., 2013; Hardaker et al., 2004). 

In the DuPont formulation for the RoE, the leverage and asset turnover ratios should 

incorporate the financial risk of the farm (as these ratios relate to the capital structure of the 

farm). Consequently, it appears reasonable to suggest that the variation in OPM would 

represent business risk. OPM incorporates farm revenues and farm costs, which are influenced 
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by the elements included in the business risk definition (production, prices, and climate). 

Further, there is support for using the standard deviation of outcome variables as an indicator 

of risk in agriculture (Sulewski et al., 2020). In banking, the standard deviation of OPM has 

been used as a measure of risk associated with businesses (Yu et al., 2019). Given the 

universality of the DuPont formulation (Doole & Te Rito, 2019), work by Yu et al. (2019) 

supports the use of the standard deviation of OPM as a measure of business risk in agriculture. 

As far as we are aware, this is the first paper to analyse the relationship between risk 

preferences and OPM on dairy farms. However, future research can extend our work by 

calculating robust empirical risk aversion coefficients and modelling these in OPM models. 

Abdullahi (2003) and Saha (1997) present an excellent formulation for this type of analysis. 

An applied analysis of the dairy sector using such a method would merit a separate paper in 

itself. 

 

3. Data 

We source our data from Doole et al. (2021), who draw on sample and population data to 

develop a complete picture of the New Zealand dairy farming population. They take population 

data from the Livestock Improvement Corporation (LIC, a farmer-owned co-operative 

responsible for herd improvement and other production activities) for the 2018/19 season. They 

then build a picture of the population over 10 years by using a sample dataset from the more 

detailed industry dataset DairyBase, which is made representative by removing outliers and 

using a binary optimisation process for each year. The data are simulated for the entire 

population, at a farm level, over the 10 years for key economic farm variables while preserving 

population distributions in key variables in the LIC dataset. The milk price included is the 

observed milk price for farmers over the 10 years, and all input cost data are deflated using the 

Farm Expenses Price Index, generated by the government statisticians, Statistics New Zealand. 

Biophysical variables are estimated using a dynamic, simulation-based framework that models 

the biophysical interdependencies on the farm. This detailed model is calibrated using real data. 

The dataset we use is the best dataset available to us of the New Zealand dairy farm 

population over time. It utilises two major dairy datasets and brings them together, leveraging 

the strengths of both. Dairybase is the most detailed dataset for New Zealand dairy farms, but 

comprises of a sample of self-selected dairy farmers submitting questionnaires and financial 

books. Therefore, the choice to submit farm data is correlated with aspects of the farm and its 

management (for example, financial astuteness). It is also a heavily restricted dataset, meaning 

only select individuals and organisations may analyse it. Conversely, our data characterises the 

entire population, using LIC population data and representative samples from the DairyBase 

data. This avoids the issues of self-selection and sampling biases. However, as the data are 

largely simulated over time, there is potential for some estimation error due to the original 

construction of the data. We believe the sophisticated, farm-level construction of the dataset 

from underlying observed data at a population level sufficiently ameliorates this concern. 
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Furthermore, it should not undermine our wider purpose in this paper to highlight the use of 

OPM in analysing farm performance. The fact that this is the best available dataset for New 

Zealand dairy farms over time is also a good argument for its use here, while highlighting the 

need for better collection and sharing of industry data in future. 

We restrict the population to farms from the Waikato region, due to its large sample 

size (3745 farms) and diverse geographical nature. Previous studies have shown considerable 

regional heterogeneity across dairy farms in New Zealand, driven by climatic and 

topographical factors (Jiang & Sharb, 2014; Wales & Kolver, 2017). There are also some 

regional differences in regulations faced by farms. Not accounting for such heterogeneity may 

lead to regional effects dominating model parameters. By reducing the sample to the Waikato 

region, we can accurately model the region and make valid inferences with greater confidence.  

During data cleaning, we remove 228, leaving us with 3517 farms. Farms are removed 

from the sample if they meet at least one of the criteria below: 

• Farms that have zero milk solids or zero land because the farm has left the 

industry. 

• Farms that have an OPM observation less than –1.0, as these farms are assumed 

to be too cost-inefficient to continue production. 

Consultation with dairy industry experts and analysis of DairyBase data demonstrates 

that the distribution of OPM does not fall below –1.0. Therefore, we remove farms with OPM 

values lower than -1.0, to ensure our data is representative.  

We choose our model variables based on pertinent areas of farm management (cost 

variables, production yield, milk production, stocking rate, meat revenue) and variables of 

interest given current dairy trends (nitrogen leaching, total emissions). We include several 

control variables (cash operating surplus, pasture and crop eaten, leverage ratio) whose effects 

on cost efficiency and OPM are already known. The full list of variables is reported in Table 1 

in the results section (which provides summary statistics and units for the variables). 

Production yield is the ratio between a farms actual and potential milk production (kg 

MS/cow). The potential milk production term represents the output possible under a perfectly 

efficient environment, one where all farm inputs are utilised most efficiently (Ma et al., 2018). 

In this sense, the production yield is a partial productivity measure (as it only accounts for 

biophysical inputs and processes - see Doole et al. 2021). 

 Production Yield=
Milk solids per cow (kg

MS
cow

)

Potential milk solids per cow (kg
MS
cow

)
    (4) 
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4. Econometric methods 

We initially categorise and benchmark farms by long-run cost efficiency performance. In line 

with Wolf et al. (2020), we divide farms into quartiles based on their long-run (10-year) mean 

OPM. Quartile 1 represents the least cost-efficient farms and quartile 4 represents the most 

cost-efficient farms. Wolf et al. (2020) find benchmarking farms in this way gives clearly 

defined and distinguishable characteristics within the groups. Thus, benchmarking by OPM is 

a useful way to investigate the factors associated with relative cost efficiency performance. 

Moreover, benchmarking farms into groups with similar characteristics provides greater depth 

for our FE analysis. For example, we can compare how cost efficiency varies with time between 

more efficient farms (farms in higher quartiles) and worse performing farms (farms in lower 

quartiles). 

Following the benchmarking process, we perform a series of Games-Howell post-hoc 

tests on the data. The Games-Howell test is a pairwise comparison test that allows us to 

determine if there are significant differences in farm variables between quartiles. The test is 

based on the Welch correction with the t-test and the studentised range statistic (Shingala & 

Rajyaguru, 2015). It controls for and reduces the incidence of type I errors whilst maintaining 

a high degree of power (Sauder & DeMars, 2019). The Games-Howell test allows us to account 

for unequal variances between the cost efficiency quartiles and heteroskedasticity in the model 

errors (Sauder & DeMars, 2019; Shingala & Rajyaguru, 2015). We use the Games-Howell tests 

to determine if there are significant differences between the means of a farm variable based on 

quartile. As simple pairwise comparison tests, they do not control for other variables. 

Nonetheless, the results provide useful descriptive statistics for further modelling and 

suggestions as to which variables may be related to cost efficiency. 

To develop our understanding of the relationships between cost efficiency and farm 

variables, we formulate FE panel regression models on OPM, including several key farm 

metrics and control variables as regressors. Hausman statistical tests informed the selection of 

FE modelling over a random-effects approach. We use a separate model for each quartile. In 

the models, the individual intercepts account for the unobservable characteristics (for each 

farm) that do not vary with time. We exclude regressors that remain near constant over time to 

avoid perturbation of the individual farm intercept terms. Consequently, neither stocking rate 

(cows per ha) or milk platform (ha) are included as regressors in the models. These variables 

had little variation over time and exhibited large levels of multicollinearity with the farm-level 

intercepts. We also exclude the standard deviation of OPM as it had a dominating and distorting 

effect on model estimates. These FE models allow us to examine cost efficiency relationships 

through time for each quartile and control for individual, farm-level variation. This is a useful 

progression from the Games-Howell tests, which only provides information on long-run 

differences in farm variables between cost efficiency quartiles.  
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We estimate the following fixed effects model: 

OPMit = αi + β
1
Xit + μ

it
    (5) 

𝑂𝑃𝑀𝑖𝑡 represents the OPM for individual 𝑖 at time 𝑡, 𝛼𝑖 is the time-independent intercept for 

each individual 𝑖, 𝜇𝑖𝑡 is an error term for individual 𝑖 at time 𝑡, Xit is a column vector of 

independent variables (regressors) and β
1
 is a row vector of coefficients. We estimate a robust 

covariance matrix to account for autocorrelation and heteroskedasticity in the FE model errors 

(Torres-Reyna, 2010).   

We find multicollinearity to be a serious issue in our initial FE models. To account for 

this, we examine a Pearson correlation matrix and consult with farm systems experts to identify 

culprit variables. Following this, we run the model omitting each culprit variable and regress 

the model residuals on the omitted variable, examining the coefficient. If this coefficient is 

insignificant at α = 0.1, the removed variable is excluded from the FE models. If the coefficient 

is significant, the removed variable is not excluded from the FE model as it adds additional 

explanatory power. We repeat this process for each variable that is characterised as posing a 

serious multicollinearity risk to the FE models. Following this process, these variables are 

removed from the FE models: 

• Nitrogen leaching (kg N/ha) 

• Total emissions (kg GHG-e/ha) 

• Supplement cost ($/ha) 

• Other fertiliser cost ($/ha) 

Nitrogen leaching is highly correlated with the nitrogen fertiliser term, supplement cost 

with the proportion of feed consisting of supplement, and total emissions with the nitrogen 

fertiliser, milk production and production yield terms. Moreover, the other fertiliser cost ($/ha) 

variable is highly correlated with nitrogen fertiliser cost ($/ha).  

 

5. Empirical Results and Discussion 

5.1 Summary statistics 
 

Table 1 provides summary statistics for the variables included in our hypotheses testing and 

FE modelling. Units are included in the table for reference when reading the results and 

discussion. The statistics are summarised over the entire 10-year period across all farms. 

Consequently, each farm has ten observations (one for each year) contributing to the overall 

summary statistics. 
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Table 1. Summary statistics for farm variables in Games-Howell tests and FE models 

Variable Mean Std dev Count (N x 10) 

Milk price ($) 6.68 1.12 36620 

Stocking rate (cows/ha) 2.86 0.33 36620 

Production yield 0.82 0.08 36620 

Standard deviation of OPM 0.12 0.03 36620 

Proportion of feed consisting of 

supplement 

24.68 8.81 36620 

Milk production (kg MS/ha) 1047.32 187.34 36620 

Nitrogen fertiliser cost ($/ha) 188.25 71.40 36620 

Pasture and crop eaten (kg DM/ha) 10628.37 1135.17 36620 

Supplement cost ($/ha) 1136.82 546.57 36620 

Leverage ratio 2.03 2.09 36620 

Cash operating surplus ($/ha) 2595.19 1298.41 36620 

Total emissions (kg CO2-e/ha) 11397.34 1950.38 36620 

Meat revenue ($/ha) 621.79 435.95 36620 

Overhead costs ($/ha) 342.51 84.58 36620 

 

5.2 Games-Howell tests 

We report the results from the Games-Howell tests in Table 2. We present pairwise 

comparisons of means of farm variables for the quartile groups. For example, the value for 

stocking rate in the Q4-Q1 column is the mean stocking rate in quartile 4 minus the mean 

stocking rate in quartile 1.  

We find no significant differences in stocking rate between quartiles. Furthermore, 

differences in milk production (kg MS/ha) are predominantly insignificant - except for the 

difference between Q4 and Q2 (-22.45 kg MS/ha) which is significant at α = 0.05. These results 

suggest that there is no stocking rate or intensity effect on cost efficiency. This finding is in 

line with Beca’s (2020) work on Australian farms, which is consistent with Australia and New 

Zealand farms being pasture-based. Our work builds on conclusions from Jiang and Sharp 

(2014) on cost efficiency for New Zealand farms. They find that herd size is positively 

correlated with cost efficiency, whilst controlling for farm size (effective hectares) and we find 

that stocking rate and milk production per hectare are uncorrelated with cost efficiency. 

However, they include a categorical variable for the traditionally continuous variable herd size. 

This may decrease the explanatory power of their model by confounding stocking rate and 

hectare effects, making it difficult to disentangle complicated regional effects that have a major 

influence on profitability.  

Production yield exhibits significant differences between all quartile pairings (Table 2). 

We find that farms with a higher cost efficiency tended to have a lower production yield. This 

aligns with traditional economic thinking around diminishing marginal returns - as farms 

attempt to extract the final units of milk solids for each cow, the milking process becomes more 

intensive and costly. DairyNZ (2021) reinforce this idea, advocating a novel approach to 

milking in New Zealand: MaxT. This approach predetermines a specified time milking time, 

per cow (which has been optimised so that 80% of cows will finish milking in that duration). 
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While this process foregoes some final units of milk solids, it has been linked to improved 

milking efficiency and profitability (DairyNZ, n.d.).   

We are surprised to find that farms with a lower standard deviation of OPM were in 

better quartiles. We expected the standard deviation to be higher for farms with larger average 

OPMs. As stated, in our literature review, standard deviation of OPM is an indicator of business 

risk appetite. An increase in the standard deviation of OPM is linked to less business risk 

aversion (as farmers are more willing to take on climatic, price and production uncertainty). 

As such, we expected these farmers to have a larger average payoff (in terms of cost efficiency) 

and risk-averse farmers to be less cost-efficient. However, our Games-Howell results show that 

farms with greater long-run cost efficiency may be exposed to less business risk.  

This may have arisen due to differences in farm system intensity. More intensive farms 

expose themselves to higher business risk (as they have a greater reliance on supplement and 

market shocks have a greater impact on their profitability) and experience significant declines 

in RoE during bad years, driven by declines in OPM (Ho et al., 2013; Shadbolt, 2012). This 

could generate lower mean OPMs for those farms (which are exposed to more business risk). 

Our results in Table 2 provide mixed support for this explanation. Farms in the higher 

performing quartiles have lower levels of fertiliser and supplemental feed costs, which are two 

important aspects of farm intensity. However, they achieve this without having a lower 

stocking rate, which is also an indicator of intensity. Pasture and crop eaten seem to be a key 

driver of this ability to maintain milk production per hectare while reducing the intensity of 

some inputs (and thus their input costs). Therefore, it seems there are synergies between cost 

efficiency and reduced business risk. 

As previously mentioned, nitrogen fertiliser cost, supplement cost and the proportion 

of feed consisting of supplement are all lower on average for more cost-efficient farms. The 

relationship between these inputs and cost efficiency depends on the production response a 

farmer can generate from their use.  For example, if fertiliser expenditure increases but 

production remains unchanged, OPM will fall. Conversely, if production increases 

concurrently, OPM may also increase. Our findings suggest that, over the long run, farms 

purchasing more nitrogen fertiliser and supplement are less cost efficient. 

A plausible explanation for this finding is that farms utilising more inputs generate a 

lower marginal production response and are consequently less cost efficient. Our work is 

consistent with Ma et al. (2018) who demonstrate that intensification of inputs does not provide 

a profit advantage and that there is a clear economical upper limit on the use of supplement. 

However, there may be sub-regional effects (within the Waikato region) which we have not 

been able to consider due to the unavailability of suitable data. Farms in certain areas may have 

a better natural environmental endowment for farming and thus require less inputs per hectare. 
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Table 2. Games-Howell test results comparing long-run farm variables between cost efficiency 

quartiles. 

 Mean difference in OPM  
Q4-Q1 Q4-Q2 Q4-Q3 Q3-Q1 Q3-Q2 Q2-Q1 

Stocking rate  0.02 -0.02 -0.01 0.03 -0.02 0.04** 

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 

Production yield -0.05*** -0.04*** -0.03*** -0.02*** -0.01** -0.01* 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Std deviation of 

OPM 

-0.07*** -0.03*** -0.02*** -0.05*** -0.01*** -0.04*** 

(0.001) (<0.0001) (<0.0001) (0.001) (<0.0001) (0.001) 

Prop of feed that 

is supplement 

-8.19*** -6.42*** -4.11*** -4.08*** -2.31*** -1.77*** 

(0.28) (0.26) (0.26) (0.29) (0.27) (0.29) 

Milk production  -0.68 -22.45** -15.31 14.64 -7.14 21.77* 

(6.11) (6.04) (5.96) (6.24) (6.17) (6.31) 

Nitrogen fertiliser 

cost  

-57.73*** -35.45*** -21.18*** -36.55*** -14.28*** -22.28*** 

(2.22) (2.03) (1.92) (2.27) (2.09) (2.36) 

Pasture and crop 

eaten  

764.17*** 415.74*** 272.36*** 491.81*** 143.38** 348.43*** 

(37.12) (36.70) (35.68) (36.71) (35.28) (36.73) 

Supplement cost  -432.85*** -344.00*** -216.17*** -216.68*** -127.84*** -88.85*** 

(17.20) (15.59) (15.06) (18.24) (16.73) (18.69) 

Leverage ratio -0.35*** -0.27*** -0.10 -0.26*** -0.17* -0.08 

(0.04) (0.05) (0.05) (0.04) (0.05) (0.05) 

Cash operating 

surplus  

1591.29*** 917.35*** 505.46*** 1085.83*** 411.89*** 673.94*** 

(19.51) (18.74) (19.24) (17.54) (16.67) (17.34) 

Total GHG 

emissions 

-510.90*** -493.03*** -248.20** -262.71** -244.82** -17.88 

(63.04) (62.67) (63.27) (65.39) (65.03) (64.81) 

Note:  Robust standard errors in parentheses.  *p<0.1; **p<0.05; ***p<0.01.; Q4 is the best and Q1 the 

worst 

Our pasture and crop eaten findings consolidate this assertion, as we find that better 

farms have greater pasture and crop eaten. Neal and Roche (2020) support this, as they find 

higher profitability was related to greater pasture and crop eaten. This could suggest that better 

farms are in superior locations for pasture growth, which would reduce the requirements for 

supplement and fertiliser.  Alternatively, better farms may optimise and use more home-grown 

feed (pasture and crop eaten) and use fertiliser and supplement more efficiently to generate a 

greater production response. In fairness, it is likely a combination of the two.  It would be 

useful to disentangle these effects in future research to see how much of the variation in cost 

efficiency depends on sub-regional effects rather than the efficient use of inputs and home-

grown feed. Our individual fixed-effects model intercepts control for such sub-regional 

heterogeneity.  

We find significant differences in financial leverage between quartiles - with more cost-

efficient farms having a smaller leverage ratio. This finding is consistent with Javed et al. 

(2015) and Getu et al. (2007) who demonstrate that cost efficiency and financial performance 

are lower for firms with greater leverage. Furthermore, relatively cost-efficient farms have 

more scope to pay down debt (Shadbolt et al., 2018). Thus, increasing cost efficiency probably 

contributes to a decreased leverage ratio (rather than lower leverage ratios driving improved 
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cost efficiency). We performed an additional Games-Howell test on the asset value ($/ha) for 

farms in each quartile and there were no significant differences. This implies that the difference 

in leverage ratios is due to better farms having more equity (supporting the notion that better 

farms can better pay down debt).  On a related note, cash operating surplus tended to be greater 

for farms with a higher average OPM. This finding is expected, as cash operating surplus and 

OPM are both dependent on operating profit by mathematical calculation.  

Apart from the difference between Q2 and Q1, there are significant decreases in GHG 

emissions when moving up a quartile. Our results suggest that some farmers may be able to 

begin to low their GHG emissions, whilst maintaining a strong level of cost efficiency. Indeed, 

the lower fertiliser use of the higher quartile farms should help lower nitrogen leaching levels 

and nitrous oxide emissions; the lower greenhouse gas emissions of the higher quartile farms 

is in fact mostly driven by lower nitrous oxide and not methane emissions. This is an important 

finding, considering the environmental actions farmers have already started taking and the 

active research and innovation around reducing agricultural GHG emissions (MFE, 2019; MFE 

& MPI, 2020). 

5.3 Fixed Effects models 

 

Our FE panel regression results by quartile are reported in Table 3. The significance and size 

of some coefficients are heterogeneous across quartiles. Our FE results demonstrate which 

variables drive variation in cost efficiency over time. 

Milk price is a significant coefficient for all models and accounts for a large proportion 

of variation in cost efficiency over time. Milk price is a fundamental component of the farm 

operating revenue term in OPM. Therefore, we expect milk price variation to impact cost 

efficiency through time. As Beca (2020) and Jiang and Sharb (2014) state, New Zealand dairy 

farms are price takers and are subject to considerable milk price fluctuations. These fluctuations 

have a substantial impact on cost efficiency. Our results suggest that a $1 increase in milk price 

is correlated with an average 12.5% increase in OPM for farms in Q1. Farms in higher quartiles 

exhibit smaller coefficients. Based on the standard errors, the differences between the 

coefficients appear significant, although we cannot say for sure.  

Our results imply that the most cost-efficient farms have cost efficiencies that are less 

subject to milk price variation. This aligns with our findings from the Games-Howell tests, 

suggesting that farms in lower quartiles had higher business risk - which incorporates exposure 

to milk price risk. 

Moreover, we suggest that the best farms have greater adaptability to pricing 

conditions. That is, when the milk price is favourable, the best farms will increase their system 

intensity, bring in more supplement and their operating expenses will increase (subduing the 

increased revenue effect in the OPM formula). This assertion is in line with Doole’s (2014) 

work, which shows that the relative profitability of different production systems varies with 

milk and input prices. At high milk prices, more intensive systems (systems which utilise more 

supplement) become more profitable. Conversely, at low milk prices, less intensive systems 

become relatively more profitable. 
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Table 3. Coefficients and standard errors for quartile FE panel models  
 OPM 
 Quartile 1 Quartile 2 Quartile 3 Quartile 4 

Milk price 0.125*** 0.103*** 0.093*** 0.087*** 

(0.005) (0.001) (0.001) (0.002) 

Milk production -0.0001 0.0004*** 0.0003*** 0.0004*** 

(0.0002) (0.0001) (0.00004) (0.00004) 

Proportion of feed 

that is supplement 

0.001 -0.002*** -0.002*** -0.005*** 

(0.003) (0.001) (0.001) (0.001) 

Production yield 0.464** 0.382*** 0.394*** 0.232*** 

(0.190) (0.052) (0.053) (0.076) 

Leverage ratio 0.001** 0.0001*** -0.00003 -0.00005 

(0.0004) (0.00002) (0.0001) (0.0001) 

Pasture and crop eaten 0.00000 0.00002*** 0.00001** -0.00001** 

(0.00002) (0.00000) (0.00000) (0.00000) 

Nitrogen fertiliser 

costs 

0.002*** 0.001*** 0.001*** 0.0003** 

(0.0002) (0.0001) (0.0001) (0.0001) 

Overhead costs 0.0005 -0.0001 -0.0001 0.0001 

(0.0004) (0.0001) (0.0001) (0.0001) 

Meat revenue -0.001*** -0.001*** -0.0004*** -0.0005*** 

(0.0001) (0.00004) (0.00003) (0.00003) 

Cash operating 

surplus 

-0.00003*** -0.00003*** -0.00002*** -0.00002*** 

(0.00001) (0.00000) (0.00000) (0.00000) 

Observations 9,160 9,150 9,160 9,150 

Adjusted R2 0.899 0.945 0.946 0.941 

F Statistic 
8,286.107*** (df = 

10; 8234) 

15,700.810*** (df = 

10; 8225) 

16,016.030*** (df = 

10; 8234) 

14,765.000*** (df = 

10; 8225) 

Note:  Robust standard errors in parentheses.  *p<0.1; **p<0.05; ***p<0.01.; Q4 is the best and Q1 

the worst 

Milk production per hectare is significantly correlation with OPM over time for all 

models (except Q1). An increase in milk production by 100 kg MS/ha is associated with a 4%, 

4% and 3% increase in OPM (for quartiles 2, 3 and 4). Our results imply relatively low 

performing farms are already at a production level where they have stopped seeing increasing 

returns to scale (whilst farms in higher quartiles have scope to increase production while 

increasing cost efficiency). Hence, for farms in Q1, improving cost efficiency does not require 

greater milk production. These farms should focus their attention to decreasing the cost of their 

current production levels or reduce their production to a more efficient level. Conversely, the 

best farms (in Q4) may experience even higher cost efficiency if they increase their milk 

production at the margin - perhaps because they are already producing milk in a highly 

productive and efficient manner. 

The proportion of feed consisting of supplement is insignificant for the Q1 model - 

however, it is significant for the Q2, Q3 and Q4 models. The coefficients are all negative. Our 

results suggest that a 10% increase in the proportion of feed consisting of supplement is 

associated with a decrease in OPM of 2% for farms in Q2 and Q3, and 5% for farms in Q4. 
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These results indicate that farms above Q1 will experience decreases in cost efficiency as the 

proportion of feed consisting of supplement rises. This could be because these farms have 

already achieved a good balance between feed deficits and supplementary feed use. As a result, 

any additional supplement would substitute pasture or crop consumption - resulting in no net 

gain in milk production and an increase in operating costs (McCahon et al., 2019). Ma et al. 

(2018) corroborates this by demonstrating that there is a clear upper limit on the ability of 

supplement to improve farm efficiency. It appears that on average, most farms in the Waikato 

have reached or surpassed that upper bound and are experiencing decreasing returns to 

supplement use.  

Production yield exhibits a statistically significant positive correlation with OPM for 

all models. For example, a 10% increase in production yield is correlated with an increase in 

OPM of 4.64% for farms in Q1, 3.82% for farms in Q2, 3.94% for farms in Q3 and 2.32% in 

Q4. This suggests that in the short-run, farms in any quartile could improve their cost efficiency 

by increasing their production yield. However, we find that over the long run, farms with a 

higher cost efficiency also have lower production yield (Table 3). This may imply that pursuing 

production yield is a good short-term strategy, but a poor long-term strategy. Similar to the 

findings for milk price, production yield has a much greater impact on poorly performing 

farms. Future research could address the mechanism driving these findings and elaborate on 

why the effect of certain variables taper off as farms improve their relative performance. 

The pasture and crop eaten relationship with OPM is positive and significant for Q2 

and Q3, whereas it is insignificant for Q1 and negative for Q4. The Q2 and Q3 results align 

with our Games-Howell tests and supports Beca (2020) and Shadbolt (2016) who demonstrate 

that pasture harvest is fundamental in cost minimisation. The negative association between 

pasture and crop eaten and cost efficiency for the best farms seems unusual. However, we 

might assume that better farms have well-rounded managerial skills that enable them to 

leverage several of the many interdependencies on a farm, rather than just pasture harvest and 

pasture eaten. It also indicates that pasture and crop eaten is a good classification tool across 

quartiles, but not necessarily within them. 

The financial leverage coefficient is significant for Q1 and Q2 and insignificant for the 

other two models. However, the significant associations are relatively weak: an increase in the 

leverage ratio by 1 is correlated with a subtle increase in OPM of 0.1% for Q1 farms and 0.01% 

for Q2 farms. Given that the mean financial leverage ratio is 1.77 in Q2, this relationship does 

not appear to be economically significant. 

The coefficients for nitrogen fertiliser costs are positive and significant for all models. 

A $100 increase in nitrogen fertiliser costs per hectare was associated with a 20% increase in 

OPM for farms in Q1, a 10% increase for farms in Q2 and Q3, and a 3% increase for farms in 

Q4. This suggests that applying more nitrogen fertiliser may be a way to improve cost 

efficiency. However, our results suggest that above average farms will not experience the same 

magnitude of increase to cost efficiency if they increase nitrogen fertiliser use. Contrastingly, 
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our Games-Howell results show that farms in higher cost-efficiency quartiles have lower 

nitrogen fertiliser application on average over a ten-year period. Hence, within benchmarked 

quartiles, farms may improve their cost efficiency by increasing nitrogen fertiliser application. 

However, over the long run, it may be better to pursue a lower nitrogen fertiliser application 

rate to move up the cost-efficiency distribution of farms. Farmers would also be aware of the 

environmental implications of nitrogen fertiliser application 

Overhead costs, meat revenue and cash operating surplus were included in the model 

as control variables. This was to account for differences in the expenses required to keep the 

farm running (overheads) and to control for changes in stock levels. Interestingly, meat revenue 

had a significant negative coefficient for all models. A plausible scenario is, controlling for all 

other variables (input costs and intensities included), farms that have greater meat revenue 

would have a smaller herd size than in the previous year, generate less operating revenue and 

have a lower OPM. Furthermore, greater meat revenue may be an indicator of poor animal 

health or productivity. If this is the case, our results are not unexpected as farms with less 

productive and healthy animals should have lower cost efficiency (due to higher health costs 

and lower milk productivity). Cash operating surplus has a significant negative coefficient for 

all models. This is an unusual observation as we would expect cash operating surplus and cost 

efficiency to be positively correlated, based on the discussion in the Games-Howell test results. 

6. Conclusions 

We address pertinent gaps in the academic literature by investigating cost efficiency for dairy 

farms in the Waikato region, New Zealand. In doing so we demonstrate how OPM can be 

usefully applied to analyse farm performance and provide insights that can be easily interpreted 

by everyone from farmers to academics. Some key findings are cost-efficient farms use less 

supplement and nitrogen fertiliser over the long run, milk price fluctuations disproportionately 

impact lower quartile groups, and farms may be able to lower their GHG emissions whilst 

maintaining strong cost efficiency. These findings deepen the understanding of cost efficiency 

and its relationships with farm variables on New Zealand dairy farms.  

Future research could investigate the spatial distributions of farms within the quartiles and 

examine the relationship between cost efficiency and farm-specific characteristics (such as age 

of operator and education level).  Furthermore, there is scope to investigate whether cost-

efficient farms have more productive and better managers or environmental endowment 

advantages over other farms. Also, there is considerable heterogeneity in model parameters 

and statistical significance between the benchmarked quartiles. There is a need to establish 

what causes these effects to better understand the farm system and cost efficiency. Finally, 

while we use the best dataset available to us, there would be considerable value in improving 

data collection and reporting capabilities for the New Zealand dairy industry, and agricultural 

industries more broadly. 
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