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Abstract 

The structural ageing of the population is one of the key global trends of the 21st Century. In 

this paper, we outline four axioms that, along with easy interpretability, we believe should 

underpin a theoretically valid measure of structural ageing: (1) population size invariance; (2) 

strong dominance; (3) weak dominance; and (4) age sensitivity. We then present a class of 

structural ageing indices that satisfy the axioms and are easily interpretable, with root-mean-

squared-age (RMSA) as our preferred measure within the class. Using historical and cross-

national data from the World Population Prospects, state-level data from the US Census 

Bureau, and local-authority- level data from New Zealand, we demonstrate that our preferred 

measure is correlated with conventional measures of structural ageing. Nevertheless, in each 

case there are large disparities in ranking for some countries, states, or local authorities between 

the different measures. These ranking disparities could be highly consequential for the 

allocation of resources, particularly between states or local areas within countries. Our 

proposed class of measures may help to avoid these disparities due to their axiomatically-

consistent nature. Finally, we present considerations for future extensions of this important 

work, including the development of equivalent measures based on prospective age. 
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1. Introduction 

The phenomenon of population ageing has gained substantially in importance over recent 
decades. For the most part, this is because of a growing recognition that future populations will 
include an increasing share of older people, raising potentially important resource implicat ions 

for national and local governments alike (Lutz et al., 2008b). The 2015 World Population 
Ageing report noted that “Population ageing—the increasing share of older persons in the 

population—is poised to become one of the most significant social transformations of the 
twenty-first century, with implications for nearly all sectors of society, including labour and 
financial markets, the demand for goods and services, such as housing, transportation and 

social protection, as well as family structures and intergenerational ties” (UN DESA, 2015, 
p.1). The corresponding 2019 World Population Ageing report notes that “Population ageing 

is one of the four “mega-trends” that characterize the global population of today—populat ion 
growth, population ageing, urbanization and international migration. Each of these mega-
trends will continue to have substantial and lasting impacts on sustainable development in the 

decades to come” (UN DESA, 2019, p.1). It is clear that better understanding of population 
ageing is critical for policy and other decision-makers.  

 
The importance and implications of population ageing for policy are widely recognised. 

Most developed countries, and many developing countries, have adopted some form of ‘healthy 

ageing’ policies in order to reduce the burden on public infrastructure, including health, 
housing, and social security (World Health Organization, 2003). In order to plan for future 

changes in population ageing though, policy makers and planners must have an understand ing 
of the trajectories of future population change. In order to target resources appropriately, they 
must know how and where population ageing is likely to be felt most acutely. Optimal planning 

and resource allocation require careful measurement of population ageing at both the nationa l 
and subnational levels. 

 
When considering the implications and measurement of population ageing, it is useful to 

draw a distinction between numerical ageing and structural ageing (Jackson, 2007). Numerica l 

ageing refers to an absolute increase in the number of older people. The primary cause of 
numerical ageing is increasing longevity – longer lives mean that people survive longer in old 
age, increasing the numbers of older people over time. Over longer time scales, birth rates and 

cohort size at birth also contribute to numerical ageing. As larger cohorts age, the numbers of 
older people increase, as can most readily be seen by the ‘Baby Boomer’ cohorts born in 

Western developed countries after World War II. In contrast, structural ageing refers to changes 
in the age distribution of the population, whereby older people constitute a larger proportion of 
the total population. Structural ageing arises due to a combination of numerical ageing 

alongside declining fertility rates, which reduces the size of subsequent age cohorts in the 
younger age groups. 

 
Although the phenomenon of population ageing is often described in terms of the 

population getting older in aggregate, there is nothing in theory that makes this process 

inevitable. The increasing population ageing that we observe in all countries today is a 
consequence of underlying sociodemographic changes that have occurred over decadal time 

scales, including increasing life expectancy at birth and decreasing fertility. If these processes 
were to reverse, the trend in population ageing could do so as well. Indeed, a limited example 
of this is readily apparent in terms of ‘age structural transitions’ (Pool et al. 2006), whereby 
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waves of birth cohorts of various sizes ripple through the age structure. For example, the Baby 
Boom of the 1950s created an ‘echo’ in terms of larger birth cohort sizes in the 1970s (Morgan, 

1998). As Easterlin (1980) noted, differences in cohort sizes can be highly consequential. 
 

Despite the critical nature of population ageing, we believe that insufficient attention has 
been paid to the measurement of structural ageing. In part, this situation arises because the 
extant measures of structural ageing are intuitively easy to understand and have been widely 

used for generations. However, these widely-used measures have substantial deficiencies that 
could in theory lead to incorrect inferences about relative rankings of locations in terms of 

structural ageing, or in changes in structural ageing over time. 
 
In this paper, we outline several straightforward axioms that we believe should underlie a 

theoretically valid measure of structural ageing. Using these axioms, we first show that the 
extant measures of structural ageing, including the mean age, median age, proportion of the 

population aged 65 years and over (or 85 years and over), the child-elder ratio, and the old-age 
dependency ratio, fail to satisfy one or more of the axioms we propose. The measure that comes 
closest to satisfying the axioms is the mean age, which may be a suitable measure depending 

on whether one believes that the measure of structural ageing should be differentially sensitive 
to different parts of the age distribution. We then propose a class of structural ageing indices 

that satisfy our proposed axioms, of which the mean age is a special case. We focus attention 
on one example within the broader class of indices, being the root-mean-squared-age (RMSA). 
In addition to satisfying each of the axioms, the class of indices we propose are readily 

interpretable, being of a scale similar to the median age or mean age (noting again that the 
mean age is a special case of our class of indices). 

 
We then go on to demonstrate, using RMSA as our preferred measure from within the class 

of axiomatically-consistent measures, the high degree of correlation between the various 

measures of structural ageing, including the RMSA measure. Specifically, we calculate 
correlations and rank correlations using: (1) national- level population estimates and projections 

from the United Nations World Population Prospects, covering the period from 1950 to 2100; 
(2) U.S. state-level population estimates, covering the period from 1980 to 2018; and (3) 
district-level population estimates and projections for territorial authorities in New Zealand, 

covering the period from 1996 to 2048. In all cases, the correlations and rank correlations 
between the measures are high. While this might provide some comfort that using the extant 

measures would not bias decision-making, there remain examples where comparisons across 
countries, states, or districts may lead to incorrect inferences being drawn. 

 

The remainder of this paper proceeds as follows. The next section presents and discusses 
our proposed axioms for the theoretically valid measurement of structural ageing, and proposes 

an axiomatically-consistent class of indices of structural ageing. We then briefly outline the 
data and methods we use for comparing measures of structural ageing, before presenting and 
discussing our results. The final section discusses the implications of the results, and considers 

future directions for research on the measurement of structural ageing. 
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2. An axiomatic approach to structural ageing 

 

The purpose of a summary measure of structural ageing is to capture within a single number 
the key characteristics of the age distribution of the population. In order to achieve this purpose, 

the measure must encode information from multiple points in the age distribution 
simultaneously. Moreover, it must encode this information in a way that ensures that changes 
at any point in the age distribution, and particularly at points in the upper tail of the age 

distribution, will be appropriately reflected in changes in the summary measure. 
 

Inspired by the example of axiomatic approaches to the measurement of poverty (see Foster 
et al., 1984), we set out to propose a set of axioms that we believe will ensure that a summary 
measure of structural ageing will best represent the underlying age distribution, encoding 

information across the entire age distribution, with a particular focus on the upper tail of the 
distribution. Our approach is similar to that applied by Chu (1997), although they take a more 

literal mathematical interpretation of the three Foster-Greer-Thorbecke axioms than we do, 
whereas we interpret the axioms more naturally in the context of population ageing (see also 
Kurek, 2007; Nath and Islam, 2009). Specifically, we propose four axioms that are simple and 

intuitive: (1) population size invariance; (2) strong dominance; (3) weak dominance; and (4) 
age sensitivity. The first three axioms are arguably uncontroversial, whereas the preferred 

degree of age sensitivity of a summary measure may depend on the preferences of the decision-
maker or the party undertaking the measurement. 

 

Axiom 1 (Population size invariance): The measure of structural ageing should not 
depend on the size of the population. 

 
As noted in the introduction section, structural ageing refers to changes in the age 

distribution of the population. Thus, the raw size of the population should not matter for a 

measure of structural ageing. For example, doubling the number of people of every age should 
leave a measure of structural ageing unchanged, because the proportion of the population at 

each and every age remains unchanged. However, such a change would lead to a substantia l 
increase in measures of numerical ageing, as the absolute number of older people would 
increase. 

 
Axiom 2 (Strong dominance): Adding a small amount δ to the age of every person in 

the population must increase the measure of structural ageing. 
 

This axiom captures the straightforward idea that if every person in the population is 

somewhat older, then the population in aggregate is older, the proportion of the population at 
older ages must be higher, and the measure of structural ageing must therefore increase. The 

cumulative density function representing the population age structure would shift everywhere 
to the right by the amount δ. In comparing the distribution before and after the addition of δ, it 
is obvious that the distribution after the addition will strictly dominate the distribution before 

the addition. Hence we refer to this axiom as strong dominance. 
 

Axiom 3 (Weak dominance): Adding a small amount δ to the age of one person in the 
population, while holding the ages of every other person constant, must increase the 
measure of structural ageing. 
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This axiom is a weaker form of the strong dominance axiom. However, it is also intuit ive 
since comparing the two populations (before and after the addition of δ, the ages of all people 

except one are the same, and one person is older. Thus, the population after the addition of δ is 
the older population. Again considering the cumulative density function, the distribution after 

the addition would shift to the right by the amount δ, everywhere to the right of the origina l 
age of the person whose age δ was added to. In comparing the distribution before and after the 
addition of δ, the distribution after the addition first order stochastically dominates the 

distribution before the addition. However, this is not strict dominance as is the case for Axiom 
2, and hence we refer to this axiom as weak dominance. 

 
Axiom 4 (Age sensitivity): Adding a small amount δ to the age of one person in the 
population, while holding the ages of every other person constant, must increase the 

measure of structural ageing by a greater amount, the older the age of the person whose 
age is added to. 

 
This axiom is based on the idea that there are important nonlinearities associated with 

ageing. As people age, an additional year may have a greater effect across various dimens ions 

of health and wellbeing than the last. For example, there is evidence for concave relationships 
between age and life satisfaction (Di Tella et al., 2003; Blanchflower and Oswald, 2008; Cheng 

et al., 2017), age and negative emotions (Teachman, 2006), and age and cognition (Verhaeghen 
and Salthouse, 1997). If the effect of an additional year of age increases with age, then a 
theoretically valid measure of structural ageing should be more sensitive to changes in the 

upper tail of the age distribution. That is because changes in the upper tail of the distribution 
has a larger effect on outcomes of interest to end users. This axiom is the most arguable of the 

four, as it is a priori unclear the precise degree of age sensitivity that should be incorporated 
into the measure of structural ageing (this is a point that we will return to later). Also, not all 
outcomes of interest have concave relationships with age. For example, productivity may have 

a convex relationship (Oster and Hamermesh, 1998; Castellucci et al., 2011). However, in cases 
such as productivity, if the outcome is reframed as productivity decline, then the relationship 

is concave. Moreover, as Chu (1997) pointed out, Sen (1976) criticised poverty summary 
measures for their insensitivity to changes in the tail of the distribution, and a similar criticism 
applies here. 

 
Along with the four axioms outlined above, we also note a fifth property that it is desirable 

for a measure of structural ageing to possess: easy interpretability. As noted in the introduction, 
the extant measures of structural ageing persist despite not conforming to all four axioms not 
necessarily because they are mathematically optimal, but because they are easy for end users 

to interpret. A measure such as the median age or the proportion of the population aged 65 
years and over is readily understandable by policymakers, planners, and other decision-makers, 

and requires minimal levels of numeracy and statistical literacy to compare and interpret 
differences between populations and changes over time. A measure of structural ageing that is 
a bare number with no easy interpretation is likely to face significant challenges in take up by 

end users. 
 

Demographers have developed a number of measures of structural ageing that are in wide 
use by end users (Gavrilov and Heuveline, 2003). The variety of measures have been 
comprehensively described elsewhere (Spijker, 2015), so we do not review them in deail here 

(although we return to some of the key alternative measures in the Discussion section). The 
most commonly applied structural ageing measures (which we will refer to as the 

‘conventional’ measures) include: 
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1. Mean age – the average age of the population; 
2. Median age – the age that divides the whole population in half, whereby half 

of the population is older, and half of the population is younger; 
3. Proportion of the population aged 65 years and over; 

4. Proportion of the population aged 85 years and over; 
5. Child-elder ratio – the ratio of the population aged 0-14 years to the population 

aged 60 years and over; and 

6. Old-age dependency ratio – the ratio of the population aged 65 years and over 
to the population aged 15 to 64 years. 

 
The child-elder ratio and the old-age dependency ratio can of course be based on different 

population groups (as to which age groups constitute elders, children, or ‘old-age’), but we 

focus here on their most common applications. The position of those measures in relation to 
satisfying the axioms, as described below, does not depend on the specific age groups that are 

included in their calculation (which is in fact the case for all of the measures we consider). In 
terms of calculation of the measures, we note that it is conventional to treat age as a discrete 
measure (in completed years since birth), although any of the measures of structural ageing can 

easily be calculated based on continuous age. Although there are other measures of structural 
ageing that are increasingly finding favour among researchers, such as prospective age 

measures (Sanderson and Scherbov, 2007), we focus on those listed above and leave 
consideration of these newer measures to the concluding section. Similarly, we also note that 
many health researchers now favour the concept of ‘functional age’ or ‘biological age’ rather 

than chronological age (Guralnik and Melzer, 2002; Skirbekk et al., 2019). We leave 
consideration of functional age and biological age to the concluding section as well.  

 
As an alternative to these conventional measures of structural ageing, we propose a general 

class of indices of structural ageing, which can be calculated as: 

 

 𝐴 = √∑ 𝑝𝑖 . (𝑎𝑖)
𝛼𝑛

𝑖=1
𝛼          (1) 

 
where A is the index of structural ageing, n is the total population size, p_i is the proportion of 

the population in age group i, a_i is the age of age group i (in years), and α is a coefficient that 
captures the age-sensitivity of the index. An index of structural ageing calculated using 
Equation (1) is simply the uncentred α-th moment of the age distribution. By construction, this 

index satisfies all of the axioms described earlier in this section provided that α>1. When α=1, 
the index is insensitive to age, and the formula returns the mean age. When α>1, the index 

exhibits age sensitivity, and the larger the value of α, the greater the degree of age sensitivity. 1 
In the absence of further research to establish and optimal value, our preferred value for α is 2, 
in which case the index is the uncentred second moment of the age distribution, which can be 

referred to as the root-mean-squared age (RMSA): 
 

𝑅𝑀𝑆𝐴 =  √∑ 𝑝𝑖 . (𝑎𝑖)
2𝑛

𝑖=1         (2) 

 
The RMSA represents a balance between ensuring that the index exhibits age sensitivity 

while not overly ‘penalising’ populations with extreme age distributions. Alternative values of 
α may be appropriate in different contexts, and likely depend on the preferences of the 

                                                 
1 While the coefficient α could, in principle, be any real number, we note that it would be conventional to use a 

positive number for α. 
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particular decision-maker. We leave detailed consideration of the optimal value of α for future 
work. 

 
Table 1 summarises whether each of the measures of structural ageing considered satisfies 

each of the axioms outlined earlier in this section. All measures satisfy the population size 
invariance axiom, and all measures satisfy the strong dominance axiom. In terms of the weak 
dominance axiom, most measures would only satisfy this axiom in a very restricted case. For 

example, the median age would only increase when δ was added to the age of a single person, 
if the result was that person would be moved from below the previous median age to above it 

(and even then, the median might not change if ages are measured in discrete whole years). 
Similarly, all of the measures that are based on proportions of the population with fixed age 
thresholds would only increase if the person were moved from below the threshold to above it. 

The only two measures that satisfy the weak dominance axiom are mean age and RMSA (both 
of which are cases of our class of structural ageing indices). Finally, RMSA is the only measure 

that satisfies the age sensitivity axiom. As noted above, mean age is not sensitive to age. All 
numerical ages are treated equally. In contrast, RMSA weights the calculation of the index by 
the numerical age, explicitly making the resulting index more sensitive to increases in the 

proportion of the population at more advanced ages.  
 

Table 1. Measures of structural ageing and satisfying of axioms 

Measure 

Axiom 1 

(Population 
size 

invariance) 

Axiom 2 

(Strong 

dominance) 

Axiom 3 

(Weak 

dominance) 

Axiom 4 

(Age 

sensitivity) 

Mean age Yes Yes Yes No 

Median age Yes Yes Sometimes* No 

Proportion of the population aged 
65 years and over 

Yes Yes Sometimes* No 

Proportion of the population aged 
85 years and over 

Yes Yes Sometimes* No 

Child-elder ratio Yes Yes Sometimes* No 

Old-age dependency ratio Yes Yes Sometimes* No 

General class of structural ageing 
indices (including RMSA) 

Yes Yes Yes Yes 

N.B. * These measures satisfy the weak dominance axiom only in some restricted cases, as noted in the text . 

 

 
3. Methods and Data 

 

We now turn our attention to the important question of whether the choice of structural ageing 

measure matters for a decision-maker. In other words, what is the likelihood that a decision-
maker draws an incorrect inference due to their use of a structural ageing measure that does 

not satisfy one or more of the axioms outlined in the previous section? In addressing this 
question, we treat RMSA as the ‘gold standard’, being the only measure of those we consider 
that satisfies all four axioms. We first calculate the RMSA measure for different populations, 

and rank the populations from the ‘oldest’ (highest RMSA) to ‘youngest’ (lowest RMSA). We 
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then calculate the other measures of structural ageing for each population, and calculate the 
Pearson correlation between each of the measures, focusing in particular on their correlation 

with RMSA. There is no expectation that the observed relationship between RMSA and other 
measures of structural ageing will be linear, as assumed by the Pearson correlation coefficient. 

Accordingly, we also rank each population based on each measure of structural ageing, and 
calculate the Spearman rank correlation between each of the measures, again focusing on the 
rank correlation with RMSA. A high correlation between a particular measure and RMSA, and 

especially a high rank correlation, would suggest that there should be little concern about 
incorrect inferences being drawn from that measure. 

 
We apply this procedure to three sets of population data, covering different geographies, 

different levels of spatial aggregation, and different time periods. This allows us to assess any 

differences in the correlations across a variety of different datasets and contexts. First, we use 
data from the United Nations World Population Prospects.2  These data include population 

estimates by five-year age group and sex for 201 countries, covering every year in the period 
from 1950 to 2020. We use data on both sexes combined, and calculate the structural ageing 
measures and correlations for the first year in each decade (i.e. 1950, 1960, 1970, 1980, 1990, 

2000, 2010, and 2020). These data also include population projections by five-year age group 
and sex for the same 201 countries, covering every year from 2020 to 2100. We use the same 

approach as for the population estimates, calculating the structural ageing measures and 
correlations based on data for both sexes combined from the medium variant projections, for 
the first year in each decade (i.e. 2030, 2040, 2050, 2060, 2070, 2080, 2090, and 2100). This 

results in 16 correlations (and rank correlations), each based on 201 country-level data points. 
 

Second, we use data from the US Census Bureau.3 These data include population estimates 
by five-year age group and sex for all fifty states and the District of Columbia, covering every 
year in the period from 1980 to 2018. As with the country-level data, we use data on both sexes 

combined, and calculate the structural ageing measures and correlations for the first year in 
each decade (i.e. 1980, 1990, 2000, and 2010), and for 2018 as the latest year of available data. 

State-level population projections are no longer available from the US Census Bureau, so we 
limit our analysis to the resulting five correlations (and rank correlations), based on 51 state-
level data points. 

 
Third, we use data from Statistics New Zealand.4 These data include population estimates 

by five-year age group and sex for 87 territorial authorities and local boards (being the most 
disaggregated administrative areas).5 As with the other datasets, we use data on both sexes 
combined, and calculate the structural ageing measures and correlations at approximate ly 

decadal intervals, coinciding with a national population census (i.e. 1996, 2006, and 2018). 
These data also include population projections by five-year age group and sex for the same 87 

territorial authorities and local boards, covering every five years from 2018 to 2048. We use 
the same approach as for the population estimates, calculating the structural ageing measures 
and correlations based on data for both sexes combined from the medium variant projections 

at decadal intervals (i.e. 2028, 2038, and 2048). This results in 6 correlations (and rank 
correlations), each based on 87 data points at the territorial authority and local board level. 

                                                 
2 https://population.un.org/wpp/Download/ 
3 https://www.census.gov/data/tables.html 
4 http://nzdotstat.stats.govt.nz/wbos/Index.aspx 
5 New Zealand has 67 territorial authorities (13 cities, 53 districts, and the Chatham Islands Territory). Auckland 

City, the largest territorial authority with approximately one quarter of the total population, is further 

disaggregated into 21 local boards. 

https://population.un.org/wpp/Download/
https://www.census.gov/data/tables.html
http://nzdotstat.stats.govt.nz/wbos/Index.aspx
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4. Results 

 

As an example of the various measures of structural ageing, Table 2 presents three examples 

from the country-level data for 2020. Uganda has among the youngest age distributions across 
all 201 countries. It has a median age of just 16.7 years, and less than two percent of the 
population is aged 65 years and under. It is ranked within the six youngest countries in all of 

the measures of structural ageing, and is the youngest based on the RMSA, with a value of 
26.8. Morocco is close to the middle of all countries in terms of its age distribution. It has a 

median age of 29.5 years, and 7.6 percent of the population is aged 65 years and over. Its 
ranking varies from 94th (old-age dependency ratio) to 115th (proportion aged 85 years and 
over), and is 97th based on the RMSA, with a value of 38.2. Japan has the oldest age 

distribution among all countries. It has a median age of 47.5 years, and 28.4 percent of the 
population is aged 65 years and over, and nearly 5 percent aged 85 years and over. It is ranked 

as the oldest country in the world for all of the measures of structural ageing, and has a RMSA 
value of 53.3.  
 

 

Table 2. Measures of structural ageing for selected countries, 2020 

Measure Uganda Morocco Japan 

Mean age 
20.90 

[196th] 
31.89 

[103rd] 
47.45 
[1st] 

Median age 
16.73 

[200th] 
29.54 

[106th] 
48.36  
[1st] 

Proportion of the population aged 

65 years and over 

1.99% 
[199th] 

7.61% 
[95th] 

28.40% 
[1st] 

Proportion of the population aged 

85 years and over 

0.06% 
[196th] 

0.36% 
[115th] 

4.75% 
[1st] 

Child-elder ratio 
14.26 
[201st] 

2.26 
[96th] 

0.36 
[1st] 

Old-age dependency ratio 
0.04 

[197th] 
0.12 
[94th] 

0.48 
[1st] 

Root-mean-squared age (RMSA) 
26.81 
[201st] 

38.18 
[97th]  

53.30  
[1st] 

N.B. Based on data from United Nations World Population Prospects; Ranking among all 201 countries (from 

oldest to youngest) is shown in square brackets. 

 

 
It is clear from Table 2 that RMSA has a similar interpretation to the mean age or median 

age, and has a value that is of a similar size, albeit uniformly higher. This is because people at 

older ages are weighted more heavily in the calculation of RMSA than they are for the mean 
age. It is also clear from the rankings presented in Table 2 that there is a high degree of 

consistency among the various measures of structural ageing. Japan is ranked as the oldest 
country on every measure, while Uganda is ranked as the youngest country on two of the 
measures (RMSA and child-elder ratio), and among the six youngest on all of them. Niger is 

the youngest country based on mean age (20.4 years) and median age (15.2 years), United Arab 
Emirates has the lowest proportion of the population aged 65 years and over (1.26%) and the 

lowest old-age dependency ratio (0.02), and Nigeria has the lowest proportion aged 85 years 
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and over (0.04%). The consistency in ranking provides some comfort in relation to the choice 
of measure by decision-makers. 

 
Tables 3 and 4 present the correlations between RMSA and each other structural ageing 

measure based on Pearson correlations (Table 3) and Spearman rank correlations (Table 4), 
calculated using country-level data from the United Nations World Population Prospects. The 
full cross-correlation tables for all measures for selected years (1950, 2020, and 2100) are 

included in the Appendix, Tables A1 and A2.6 The Spearman rank correlations are further 
illustrated by scatter plots of the country-level percentile ranks of RMSA and each of the other 

measures. These plots are presented in the Appendix for three selected years: Figures A1 to A6 
(for 1950); Figures A7 to A12 (for 2020); and Figures A13 to A18 (for 2100).7 As is clear from 
Tables 3 and 4, the Pearson correlations and Spearman rank correlations between each measure 

and RMSA are high, ranging from 0.717 to 0.999. All of the correlations are highly statistica l ly 
significant. 

 
Considering the results in Tables 3 and 4, some key features are apparent. First, the 

correlations for population estimates (based on past age distributions) are much lower than the 

correlations for population projections (based on projected future age distributions). Moreover, 
the further into the future, the higher the correlations become. This is also illustrated in Figures 

1 and 2, which plot over time the Pearson correlations and Spearman rank correlations, 
respectively. It is likely that more ‘regular’ population age distributions, where there are fewer 
population waves of larger or smaller cohorts, lead to measures that are more closely correlated 

with each other. These waves appear naturally in real-world settings, driven by policy and 
sociocultural changes. Since the population estimates of past population age distributions are 

based on observed real-world data, they pick up these waves. In contrast, the parameters of 
population projection models are either fixed or change slowly over time. They are not typically 
designed to introduce waves of larger or smaller cohorts (although they may generate echoes 

of past waves). This leads to population age structures that are more regular than those observed 
in real-world data. So, it should be no surprise that the correlations between the measures of 

structural ageing are higher for projected data than for historical data. Moreover, the age 
distribution in projected years is derived from a combination of the baseline population age 
structure, which is itself based on real-world data, and the changes in the distribution driven by 

the underlying assumptions and parameters in the population projections model. Thus, as we 
consider projections that are further into the future, the current distribution contributes less, 

and the model assumptions and parameters contribute more, to the observed age distribution. 
Hence, the further into the future, the more the projections model will contribute to the 
measures of structural ageing. This leads to measures that appear to become more correlated 

over time into the future. Looking backwards, it is likely that data quality becomes more of an 
issue for more historical population estimates. That could lead to lower correlations between 

measures of structural ageing (due to measurement error in the population age distribution) or 
higher correlations if population estimates are based predominantly on model outputs (for the 
same reason that population projections lead to more regular age distributions). In both sets of 

correlations, the proportion of the population aged 85 years and over has the lowest correlation 
with RMSA. It is likely that this is the population that is subject to the greatest extent of 

measurement error. However, for some measures, the Spearman rank correlations (Table 4 and 
Figure 2) are higher in earlier years, where modelling is probably required to derive the 

                                                 
6 Corresponding correlation tables for other years are available on request from the author. 
7 Corresponding figures for other years are available on request from the author. 
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estimated population age distributions for a greater proportion of countries. Thus, it is likely 
that both effects are occurring simultaneously within these data. 

 

 

Table 3. Pearson correlations between RMSA and other measures of structural ageing 

based on country-level data 1950-2100 

Year Mean age 
Median 

age 

Proportion 
of the 

population 

aged 65 

years and 

over 

Proportion 
of the 

population 

aged 85 

years and 

over 

Child-

elder ratio* 

Old-age 

dependency 

ratio 

1950 0.993 0.954 0.962 0.717 0.867 0.914 

1960 0.995 0.969 0.974 0.878 0.918 0.939 

1970 0.996 0.963 0.978 0.914 0.928 0.946 

1980 0.997 0.976 0.978 0.923 0.920 0.953 

1990 0.997 0.980 0.968 0.924 0.908 0.941 

2000 0.998 0.985 0.968 0.908 0.916 0.948 

2010 0.997 0.987 0.957 0.887 0.914 0.932 

2020 0.998 0.989 0.957 0.886 0.905 0.934 

2030 0.998 0.992 0.968 0.868 0.891 0.948 

2040 0.999 0.992 0.973 0.876 0.884 0.946 

2050 0.999 0.994 0.982 0.885 0.884 0.955 

2060 0.999 0.995 0.987 0.886 0.895 0.965 

2070 0.999 0.995 0.991 0.911 0.912 0.972 

2080 0.999 0.995 0.993 0.931 0.921 0.971 

2090 0.999 0.993 0.996 0.936 0.931 0.980 

2100 0.999 0.992 0.997 0.943 0.939 0.979 

N.B. Calculations based on data from United Nations World Population Prospects. * For comparability, for the 

child-elder ratio the absolute value of each correlation is shown, as this measure is negatively correlated with all 

other measures. 
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Table 4. Spearman rank correlations between RMSA and other measures of structural 

ageing based on country-level data 1950-2100 

Year Mean age Median age 

Proportion 

of the 

population 

aged 65 

years and 

over 

Proportion 

of the 

population 

aged 85 

years and 

over 

Child-elder 

ratio* 

Old-age 

dependency 

ratio 

1950 0.986 0.930 0.948 0.802 0.988 0.893 

1960 0.981 0.899 0.932 0.822 0.978 0.886 

1970 0.975 0.844 0.931 0.823 0.982 0.879 

1980 0.985 0.934 0.937 0.878 0.983 0.879 

1990 0.993 0.967 0.944 0.904 0.976 0.892 

2000 0.997 0.981 0.950 0.929 0.981 0.852 

2010 0.997 0.985 0.959 0.937 0.990 0.933 

2020 0.997 0.987 0.968 0.947 0.994 0.945 

2030 0.998 0.991 0.989 0.950 0.997 0.979 

2040 0.998 0.991 0.994 0.965 0.996 0.988 

2050 0.998 0.992 0.995 0.973 0.993 0.991 

2060 0.998 0.993 0.994 0.967 0.992 0.991 

2070 0.998 0.993 0.998 0.972 0.990 0.996 

2080 0.998 0.992 0.998 0.973 0.990 0.996 

2090 0.998 0.990 0.997 0.975 0.989 0.996 

2100 0.998 0.988 0.998 0.972 0.988 0.997 

N.B. Calculations based on data from United Nations World Population Prospects. * For comparability, for the 

child-elder ratio the absolute value of each correlation is shown, as this measure is negatively correlated with all 

other measures. 
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Figure 1. Pearson correlations between RMSA and other measures of structural ageing 

based on country-level data 1950-2100 
 

 
 

 

Figure 2. Spearman rank correlations between RMSA and other measures of structural 

ageing based on country-level data 1950-2100 
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Second, comparing Tables 3 and 4, for most measures the Spearman rank correlation (Table 

4) is higher than the corresponding Pearson correlation (Table 3). This reflects that the 
relationship between the measures is not linear, as discussed earlier. Third, it is clear that mean 

age has the highest correlation with RMSA of all of the other measures of structural ageing. It 
has a Pearson correlation with RMSA that ranges from 0.993 to 0.999, and a Spearman rank 
correlation that ranges from 0.975 to 0.998. Recall that mean age and RMSA are the only 

measures that consistently satisfy the weak dominance axiom, while all other measures only 
obey the axiom in some specific circumstances. Moreover, mean age is a special case of our 

generalised structural ageing index, where α=1. The other measures are not as closely related 
to RMSA, and this is reflected in lower correlations. The relative ranking of the other measures 
in terms of their correlations with RMSA is not consistent between Pearson and Spearman rank 

correlations, or over time, with the exception of the proportion of the population aged 85 years 
and over, which is for the most part the least correlated with RMSA. This suggests that there 

is little to choose between these other measures, and they are highly correlated with each other 
(see Appendix, Tables A1 and A2). 

 

Finally, despite the high correlations between the measures, there are some countries in 
some periods where the measures lead to disparate rankings. For example, in 2020 Kuwait is 

ranked 63rd based on median age (36.8 years), but is ranked 200th based on the proportion 
aged 85 years and over (0.05%). Similarly, United Arab Emirates is ranked 81st based on 
median age (32.6 years), but as noted earlier is ranked 201st and last based on the proportion 

aged 65 years and over and the old-age dependency ratio. Those discrepancies, along with 
similar differences for Bahrain, Qatar, Oman, and Saudi Arabia, reflect the large and relative ly 

young temporary migrant worker populations in those countries. However, it is not just the 
Gulf states where large discrepancies in rankings exist. The Maldives is ranked 101st for 
median age (29.9 years), but is ranked 189th for old-age dependency ratio (0.05). And 

relatively large discrepancies are not just a feature of low-income and middle- income countries. 
Sweden is ranked 15th based on old-age dependency ratio (0.33), but is ranked 41st based on 

median age (41.1 years). Similar discrepancies are observable across all years of the data, both 
past estimates and future projections. 

 

It is clear that the various measures of structural ageing are closely correlated, but 
imperfectly so. Countries are over-ranked or under-ranked by some measures both relative to 

RMSA, and relative to other measures. However, the analysis above relies on cross-country 
data, and resource allocation decisions are rarely made between countries. That makes cross-
country comparisons less relevant to most decision-makers. Accordingly, we now turn to 

comparisons based on subnational data. 
 

Table 5 presents the Pearson and Spearman rank correlations between RMSA and each other 
structural ageing measure, calculated using state-level population estimates data from the US 
Census Bureau. The full cross-correlation tables for all measures for selected years (1980, 

2000, and 2018) are included in the Appendix, Tables A3 and A4.8 The results are not as 
straightforward as those based on the international data. Like for the international data, the 

mean age has the highest correlations with RMSA. However, the correlations are generally 
lower than those observed in the international data, and the pattern of gradual increases in the 
correlations over time is repeated only for mean age and median age, and not for other 

measures. In fact, the correlations between the proportion of the population aged 85 years and 

                                                 
8 Corresponding correlation tables for other years are available on request from the author.  
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over and RMSA actually decrease over time. Also, the Spearman rank correlations are smaller 
than the Pearson correlations for some of the measures. This suggests that it cannot be taken 

for granted that measures of structural ageing will become more highly correlated over time. 
 

 

Table 5. Pearson and Spearman rank correlations between RMSA and other measures 

of structural ageing based on US state-level data 1980-2018 

 

Year Mean age 
Median 

age 

Proportion 

of the 

population 

aged 65 

years and 
over 

Proportion 

of the 

population 

aged 85 

years and 
over 

Child-

elder 

ratio* 

Old-age 

dependency 

ratio 

Pearson 

correlations 
      

1980 0.984 0.874 0.955 0.796 0.897 0.915 

1990 0.984 0.889 0.967 0.801 0.909 0.920 

2000 0.990 0.918 0.955 0.818 0.936 0.927 

2010 0.990 0.950 0.940 0.782 0.937 0.890 

2018 0.991 0.970 0.965 0.734 0.958 0.923 

       

Spearman 

rank 
correlations 

      

1980 0.976 0.827 0.941 0.840 0.982 0.896 

1990 0.972 0.859 0.965 0.861 0.941 0.908 

2000 0.976 0.900 0.945 0.855 0.953 0.912 

2010 0.982 0.936 0.923 0.794 0.896 0.853 

2018 0.988 0.964 0.937 0.687 0.982 0.860 

N.B. Calculations based on data from the US Census Bureau. * For comparability, for the child-elder ratio the 

absolute value of each correlation is shown, as this measure is negatively correlated with all other measures. 

 
 

However, like the cross-country data there are wide differences in the rankings of some 
states across different measures. For example, in 2018 New York is ranked eighth based on the 

proportion of the population aged 85 years and over (2.50%), but is ranked 47th based on 
median age (35.4 years). South Carolina is ranked ninth based on old-age dependency ratio 
(0.28), but is ranked 41st based on the proportion of the population aged 85 years and over 

(1.76%). In contrast, Utah is ranked the youngest or second-youngest state on every measure, 
while Florida is ranked among the five oldest states on every measure. 
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Like the cross-country data, the US state-level data highlights the close (although not as 
close as for the cross-country data) correlations between the various measures of structural 

ageing. However, the comparisons are somewhat hampered by being based only on historica l 
population estimates data. Most decision-makers will instead look at data based on projected 

future age distributions. Accordingly, we now apply the same comparisons to subnational data 
where both past estimates and future projections are available from the same source. 

 

Table 6 presents the Pearson and Spearman rank correlations between RMSA and each other 
structural ageing measure, calculated using population estimates and projections data for 

territorial authorities and local boards in New Zealand, from Statistics New Zealand. The full 
cross-correlation tables for all measures for selected years (1996, 2018, and 2048) are included 
in the Appendix, Tables A5 and A6.9 The results fall somewhere in-between those presented 

earlier based on country-level and US state-level data. The correlations are lower than those 
observed in the international data, but higher than those in the state-level data. However, unlike 

either of the other data sources, there is little systematic difference between the Pearson 
correlations and the Spearman rank correlations in the New Zealand data. Looking at changes 
over time, there is no apparent substantial increase in the correlations in the historica l 

population estimates data, but the correlations do increase over time in the projected data. This 
supports the earlier assertions that population projections models lead to age distributions that 

are more regular, and that measurement error likely contributes to lower correlations in the 
more historical international data. Like for both other data sources, mean age has the highest  
correlation with RMSA, while the proportion of the population aged 85 years and over is in 

most instances the least correlated with RMSA. 
 

However, like the other data sources there are wide differences in the rankings of some 
territorial authorities and local boards across different measures. For example, in 2018 the 
Aotea/Great Barrier local board area is ranked second based on mean age (47.1 years), median 

age (52.3 years), child-elder ratio (0.40), and RMSA (52.3 years), but 79th based on the 
proportion of the population aged 85 years and over (1.0%). This probably reflects the relative 

remoteness of that local board area from the tertiary hospital care that the oldest aged people 
may need access to. The Waiheke local board area is similar. However, unlike Aotea/Great 
Barrier and Waiheke, the Waitemata local board area is located on the mainland and in central 

Auckland, and yet is ranked as the youngest area based on the proportion of the population 
aged 65 years and over (7.9%), the proportion of the population aged 85 years and over (0.6%), 

and the old-age dependency ratio (0.10), but 32nd based on the child-elder ratio (0.78). That 
reflects that central city urban living in New Zealand is currently attractive for relatively young 
urban professionals and students, but is less attractive for both older people and young families. 

In contrast, Thames-Coromandel District is ranked the oldest area on every measure except 
one (the proportion aged 85 years and over), while the Otara-Papatoetoe local board area is 

ranked among the three youngest areas on every measure, and the Mangere-Otahuhu local 
board area is ranked among the four youngest areas on every measure. 

  

                                                 
9 Corresponding correlation tables for other years are available on request from the author. 
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Table 6. Pearson and Spearman rank correlations between RMSA and other measures 

of structural ageing based on New Zealand territorial authority and local board data 

1996-2048 

Year Mean age 
Median 

age 

Proportion 

of the 

population 

aged 65 

years and 

over 

Proportion 

of the 

population 

aged 85 

years and 

over 

Child-
elder 

ratio* 

Old-age 
dependency 

ratio 

Pearson 

correlations 
      

1996 0.987 0.941 0.963 0.808 0.905 0.934 

2006 0.987 0.964 0.956 0.718 0.905 0.922 

2018 0.989 0.977 0.979 0.708 0.899 0.956 

2028 0.992 0.980 0.987 0.855 0.872 0.965 

2038 0.992 0.987 0.990 0.924 0.890 0.971 

2048 0.990 0.985 0.986 0.939 0.883 0.966 

       

Spearman 
rank 

correlations 

      

1996 0.984 0.933 0.969 0.806 0.929 0.942 

2006 0.985 0.954 0.961 0.717 0.941 0.927 

2018 0.991 0.979 0.982 0.682 0.935 0.963 

2028 0.995 0.989 0.988 0.844 0.902 0.972 

2038 0.994 0.991 0.992 0.915 0.911 0.978 

2048 0.993 0.986 0.988 0.936 0.886 0.974 

N.B. Calculations based on data from Statistics New Zealand. * For comparability, for the child-elder ratio the 

absolute value of each correlation is shown, as this measure is negatively correlated  with all other measures. 

 

 

5. Discussion 

 

Our results should provide both comfort and concern to end users of structural ageing measures. 
The high correlations between the measures, and especially between our preferred RMSA 

measure and other measures, suggests that for the most part, the consequences of the choice of 
structural ageing measure are unlikely to be seriously negative. This will particularly be the 
case where the numerical value of the structural ageing measure, and not the relative ranking 

of the area, is the primary concern. For example, in quantitative applications, the use of median 
age or the proportion of the population aged 65 years and over, is unlikely to seriously bias 
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estimated model coefficients. However, the substantial disparity in ranking for some countries 
or areas between different measures of structural ageing could lead to serious misallocat ions 

of resources, particularly when those resources are targeted or allocated on the basis of a 
ranking on current or projected future levels of structural ageing. Policymakers could be misled 

to believe that particular areas are projected to age more rapidly than others based on the 
conventional measures of structural ageing, where that might not necessarily be the case based 
on an axiomatically-consistent measure. For example, this might have consequences for the 

quantity and quality of community-based and home-based aged care services (Hunter et al., 
2019), the provision or rollout of ‘age-friendly’ infrastructure or services (O’Brien, 2014), or 

the priority attached to the development of ‘ageing- in-place’ strategies (Heumann and Boldy, 
1993). Misallocation or mis-targeting of resources in these areas could have significant 
consequences on the future quality of life for older people. 

 
A key concern about many of the measures of structural ageing is that they are based on 

particular age thresholds, the thresholds are essentially arbitrary and based on historica l 
‘accidents’ (Costa, 1998), and the calculation of the measures is discontinuous at those 
thresholds (Lutz et al., 2008a; Spijker, 2015). This applies even to recently proposed measures 

that share inspiration from the analysis of income distributions, such as the optimal grouping 
approach based on Lorenz Curves proposed by D’Albis and Collard (2013). This leads to 

structural ageing measures that ignore parts of the age distribution in their calculation (which 
is why those measures do not satisfy one or more of our proposed axioms). Our preferred 
axiomatically-consistent class of structural ageing indices ensure that differences at any point 

in the age distribution are adequately accounted for, and especially differences in the upper tail 
of the age distribution, which are most consequential in terms of their resource implications for 

policymakers and other decision-makers. 
 
However, the optimal degree of age sensitivity built into the measure is one aspect that we 

have not explored in this paper. For simplicity, we employed α=2, leading to the RMSA 
measure. Alternative values of α may be desirable in different applications, and different 

decision-makers, with different preferences or use cases, may exhibit different degrees of age 
sensitivity. We leave further exploration of the optimal degree of age sensitivity in different 
applications for future research. 

 
There have been two under-appreciated developments in the measurement of ageing that 

have increasingly gained prominence in recent years. The first is a proposal to reverse the 
measurement of ageing from the number of years of life completed to the number of years of 
life remaining, which dates to Ryder (1975). These ‘prospective ageing measures’ (Sanderson 

and Scherbov, 2007) offer the advantage of better capturing population ageing in a context of 
an increasing number of years of healthy life, whereby chronological age fails to capture 

changes in the physical and mental capacities of older people that relate to their health over the 
entire life course, as well as important implications in relation to social security and health 
expenditures (Fuchs, 1984; Shoven, 2007). However, they have been subject to criticism due 

to uncertainty in life expectancy and sensitivity to proportional rescaling (D’Albis and Collard, 
2013). The second and related development is a change in focus in the field of health from 

measuring ‘chronological ageing’ in terms of completed years since birth, to ‘functiona l 
ageing’, which incorporates physical or cognitive functioning, and better captures the ability 
of older people to engage in activities of daily living (Guralnik and Melzer, 2002; Skirbekk et 

al., 2019). Aligned to this is the concept of active life expectancy or healthy life expectancy 
(Katz et al., 1983; Robine and Ritchie, 1991), disability- free life expectancy (Sanderson and 

Scherbov, 2010; Manton and Gu, 2001) and more recently to ageing measures based on α-ages, 
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which can be computed from characteristics of the population, such as remaining healthy life 
expectancy (e.g. see Sanderson and Scherbov, 2013; Sanderson et al., 2016), and measures 

based on cognitive ageing (Skirbekk et al., 2011) or biological aging (Skirbekk et al., 2019). 
 

To date, prospective ageing measures have been rarely applied. Sanderson and Scherbov 
(2005) apply the concept of the standardised median age – the median number of expected 
years of remaining life. Sanderson and Scherbov (2007) applied the standardised median age 

(which they now termed prospective median age), along with the prospective old age 
dependency ratio – the ratio of the number of people at a ‘prospective age’ of 65 years or older 

to the number of people aged between 20 years and the ‘prospective age’ of 65 years. Simila r ly, 
Sanderson and Scherbov (2008) computed a measure of the proportion of the population with 
15 years or less of remaining life expectancy as a prospective ageing measure (see also Spijker 

and MacInnes, 2013; Spijker et al., 2014; Scherbov et al., 2016; Sanderson et al., 2017; Gietel-
Basten and Scherbov, 2019). When a threshold or median is employed in these measures, even 

where that threshold changes over time to account for increasing life expectancy, they will 
generally fail to satisfy the weak dominance axiom, just as their chronological age equivalents 
do. However, in principle there is no reason why the mean number of years of life remaining 

could not be employed, which would meet all of the axioms other than age sensitivity, or indeed 
the broader class of structural ageing indices that we have introduced in this paper could easily 

be extended to the measurement of prospective ageing. The combination of these two 
approaches would be a welcome advance, leveraging the theoretical advantages of both. We 
leave this as a fruitful avenue for future work in this area. 

 
We based our class of indices of structural ageing on four underlying axioms – population 

size invariance, strong dominance, weak dominance, and age sensitivity – along with easy 
interpretability. By construction, our class of indices meets the four axioms, and because the 
indices are similar in size to the median age and mean age (which is itself a special case of our 

broader class of measures), we expect that they share the property of easy interpretability 
(unlike the index developed by Chu (1997) based on a similar set of axioms). However, our 

proposed axioms are not the only properties that end users may desire in a theoretically valid 
measure of structural ageing. Group-wise additivity or decomposability may also be desirable, 
whereby the measure of structural ageing for the population as a whole is a weighted sum of 

the measures for important population subgroups (such as male/female, or regions within a 
country). Our class of structural ageing indices is not decomposable in this way. There exist 

many other concave functions of age that would satisfy the four axioms (including age 
sensitivity) and be decomposable. However, those alternatives are not as readily interpretab le 
as our indices, and thus it may be difficult to encourage their use among policymakers and 

other decision-makers. Further exploration of these issues is desirable. 
 

The measurement of structural ageing is important, and as the global population ages, 
accurate and theoretically valid measurement will continue to increase in importance. We hope 
that our proposed class of axiomatically-consistent measures of structural ageing will 

contribute to advancing the state of measurement in this important area of research and policy.  
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Appendix 

 

Table A1. Pearson correlations between measures of structural ageing based on 

country-level data 1950, 2020, and 2100 

Year Mean age 
Median 

age 

Proportion 

65+ 

Proportion 

85+ 
CER* OADR** RMSA*** 

1950        

Mean age 1.000       

Median age 0.978 1.000      

Proportion 65+ 0.936 0.869 1.000     

Proportion 85+ 0.674 0.598 0.782 1.000    

CER 0.837 0.761 0.832 0.606 1.000   

OADR 0.870 0.782 0.986 0.807 0.819 1.000  

RMSA 0.993 0.954 0.962 0.717 0.867 0.914 1.000 

        

2020        

Mean age 1.000       

Median age 0.995 1.000      

Proportion 65+ 0.946 0.928 1.000     

Proportion 85+ 0.874 0.858 0.950 1.000    

CER 0.903 0.892 0.776 0.680 1.000   

OADR 0.920 0.901 0.996 0.957 0.739 1.000  

RMSA 0.998 0.989 0.957 0.886 0.905 0.934 1.000 

        

2100        

Mean age 1.000       

Median age 0.995 1.000      

Proportion 65+ 0.996 0.991 1.000     

Proportion 85+ 0.936 0.917 0.950 1.000    

CER 0.940 0.930 0.913 0.797 1.000   

OADR 0.979 0.979 0.991 0.962 0.861 1.000  

RMSA 0.999 0.992 0.997 0.943 0.939 0.979 1.000 

N.B. Calculations based on data from United Nations World Population Prospects. * Child-elder ratio; for 

comparability, for the child-elder ratio the absolute value of each correlation is shown, as this measure is 

negatively correlated with all other measures; ** Old-age dependency ratio; *** Root-mean-squared age. 
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Table A2. Spearman rank correlations between measures of structural ageing based on 

country-level data 1950, 2020, and 2100 

Year Mean age 
Median 

age 

Proportion 

65+ 

Proportion 

85+ 
CER* OADR** RMSA*** 

1950        

Mean age 1.000       

Median age 0.973 1.000      

Proportion 65+ 0.898 0.799 1.000     

Proportion 85+ 0.753 0.660 0.857 1.000    

CER 0.961 0.889 0.976 0.819 1.000   

OADR 0.827 0.709 0.987 0.860 0.933 1.000  

RMSA 0.986 0.930 0.948 0.802 0.988 0.893 1.000 

        

2020        

Mean age 1.000       

Median age 0.995 1.000      

Proportion 65+ 0.949 0.925 1.000     

Proportion 85+ 0.929 0.904 0.975 1.000    

CER 0.991 0.978 0.974 0.950 1.000   

OADR 0.923 0.893 0.994 0.969 0.953 1.000  

RMSA 0.997 0.987 0.968 0.947 0.994 0.945 1.000 

        

2100        

Mean age 1.000       

Median age 0.992 1.000      

Proportion 65+ 0.998 0.991 1.000     

Proportion 85+ 0.961 0.930 0.964 1.000    

CER 0.994 0.990 0.988 0.942 1.000   

OADR 0.995 0.988 0.999 0.966 0.984 1.000  

RMSA 0.998 0.988 0.998 0.972 0.988 0.997 1.000 

N.B. Calculations based on data from United Nations World Population Prospects. * Child-elder ratio; for 

comparability, for the child-elder ratio the absolute value of each correlation is shown, as this measure is 

negatively correlated with all other measures; ** Old-age dependency ratio; *** Root-mean-squared age. 
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Table A3. Pearson correlations between measures of structural ageing based on state -

level data 1980, 2000, and 2018 

Year Mean age 
Median 

age 

Proportion 

65+ 

Proportion 

85+ 
CER* OADR** RMSA*** 

1980        

Mean age 1.000       

Median age 0.941 1.000      

Proportion 65+ 0.899 0.734 1.000     

Proportion 85+ 0.722 0.515 0.852 1.000    

CER 0.860 0.697 0.833 0.691 1.000   

OADR 0.842 0.661 0.992 0.849 0.786 1.000  

RMSA 0.984 0.874 0.955 0.796 0.897 0.915 1.000 

        

2000        

Mean age 1.000       

Median age 0.954 1.000      

Proportion 65+ 0.908 0.770 1.000     

Proportion 85+ 0.753 0.615 0.884 1.000    

CER 0.916 0.797 0.907 0.768 1.000   

OADR 0.870 0.728 0.995 0.887 0.868 1.000  

RMSA 0.990 0.918 0.955 0.818 0.936 0.927 1.000 

        

2018        

Mean age 1.000       

Median age 0.985 1.000      

Proportion 65+ 0.934 0.899 1.000     

Proportion 85+ 0.696 0.612 0.717 1.000    

CER 0.971 0.929 0.891 0.691 1.000   

OADR 0.876 0.841 0.989 0.695 0.823 1.000  

RMSA 0.991 0.970 0.965 0.734 0.958 0.923 1.000 

N.B. Calculations based on data from United Nations World Population Prospects. * Child-elder ratio; for 

comparability, for the child-elder ratio the absolute value of each correlation is shown, as this measure is 

negatively correlated with all other measures; ** Old-age dependency ratio; *** Root-mean-squared age. 
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Table A4. Spearman rank correlations between measures of structural ageing based on 

state-level data 1980, 2000, and 2018 

Year Mean age 
Median 

age 

Proportion 

65+ 

Proportion 

85+ 
CER* OADR** RMSA*** 

1980        

Mean age 1.000       

Median age 0.901 1.000      

Proportion 65+ 0.874 0.639 1.000     

Proportion 85+ 0.777 0.520 0.892 1.000    

CER 0.981 0.838 0.921 0.825 1.000   

OADR 0.808 0.555 0.987 0.872 0.860 1.000  

RMSA 0.976 0.827 0.941 0.840 0.982 0.896 1.000 

        

2000        

Mean age 1.000       

Median age 0.936 1.000      

Proportion 65+ 0.870 0.743 1.000     

Proportion 85+ 0.777 0.642 0.897 1.000    

CER 0.954 0.818 0.911 0.792 1.000   

OADR 0.820 0.703 0.990 0.893 0.860 1.000  

RMSA 0.976 0.900 0.945 0.855 0.953 0.912 1.000 

        

2018        

Mean age 1.000       

Median age 0.984 1.000      

Proportion 65+ 0.895 0.838 1.000     

Proportion 85+ 0.646 0.598 0.648 1.000    

CER 0.990 0.963 0.903 0.639 1.000   

OADR 0.799 0.737 0.975 0.595 0.804 1.000  

RMSA 0.988 0.964 0.937 0.687 0.982 0.860 1.000 

N.B. Calculations based on data from United Nations World Population Prospects. * Child-elder ratio; for 

comparability, for the child-elder ratio the absolute value of each correlation is shown, as this measure is 

negatively correlated with all other measures; ** Old-age dependency ratio; *** Root-mean-squared age. 
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Table A5. Pearson correlations between measures of structural ageing based on New 

Zealand territorial authority and local board data 1996, 2018, and 2048 

Year Mean age 
Median 

age 

Proportion 

65+ 

Proportion 

85+ 
CER* OADR** RMSA*** 

1996        

Mean age 1.000       

Median age 0.958 1.000      

Proportion 65+ 0.921 0.832 1.000     

Proportion 85+ 0.779 0.626 0.859 1.000    

CER 0.912 0.797 0.863 0.809 1.000   

OADR 0.876 0.802 0.990 0.822 0.799 1.000  

RMSA 0.987 0.941 0.963 0.808 0.905 0.934 1.000 

        

2018        

Mean age 1.000       

Median age 0.986 1.000      

Proportion 65+ 0.954 0.939 1.000     

Proportion 85+ 0.656 0.584 0.741 1.000    

CER 0.920 0.865 0.837 0.633 1.000   

OADR 0.923 0.914 0.994 0.736 0.787 1.000  

RMSA 0.989 0.977 0.979 0.708 0.899 0.956 1.000 

        

2048        

Mean age 1.000       

Median age 0.987 1.000      

Proportion 65+ 0.959 0.963 1.000     

Proportion 85+ 0.926 0.896 0.928 1.000    

CER 0.912 0.857 0.830 0.841 1.000   

OADR 0.936 0.951 0.992 0.917 0.782 1.000  

RMSA 0.990 0.985 0.986 0.939 0.883 0.966 1.000 

N.B. Calculations based on data from United Nations World Population Prospects. * Child-elder ratio; for 

comparability, for the child-elder ratio the absolute value of each correlation is shown, as this measure is 

negatively correlated with all other measures; ** Old-age dependency ratio; *** Root-mean-squared age. 
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Table A6. Spearman rank correlations between measures of structural ageing based on 

New Zealand territorial authority and local board data 1996, 2018, and 2048 

Year Mean age 
Median 

age 

Proportion 

65+ 

Proportion 

85+ 
CER* OADR** RMSA*** 

1996        

Mean age 1.000       

Median age 0.944 1.000      

Proportion 65+ 0.929 0.836 1.000     

Proportion 85+ 0.778 0.623 0.865 1.000    

CER 0.958 0.831 0.906 0.820 1.000   

OADR 0.886 0.809 0.988 0.833 0.846 1.000  

RMSA 0.984 0.933 0.969 0.806 0.929 0.942 1.000 

        

2018        

Mean age 1.000       

Median age 0.985 1.000      

Proportion 65+ 0.954 0.935 1.000     

Proportion 85+ 0.652 0.577 0.711 1.000    

CER 0.957 0.916 0.896 0.619 1.000   

OADR 0.927 0.914 0.993 0.691 0.858 1.000  

RMSA 0.991 0.979 0.982 0.682 0.935 0.963 1.000 

        

2048        

Mean age 1.000       

Median age 0.986 1.000      

Proportion 65+ 0.969 0.966 1.000     

Proportion 85+ 0.926 0.887 0.930 1.000    

CER 0.915 0.869 0.845 0.841 1.000   

OADR 0.947 0.953 0.994 0.912 0.807 1.000  

RMSA 0.993 0.986 0.988 0.936 0.886 0.974 1.000 

N.B. Calculations based on data from United Nations World Population Prospects. * Child-elder ratio; for 

comparability, for the child-elder ratio the absolute value of each correlation is shown, as this measure is 

negatively correlated with all other measures; ** Old-age dependency ratio; *** Root-mean-squared age. 

 


