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Abstract 

 

Zipf’s Law describes an empirical regularity that appears across many human and physical 

domains, and states that ranked data exhibits a power law distribution. Although there are 

various extant studies illustrating power law relationships using social media data, we 

significantly extend these previous studies by looking at eight popular online social media 

networks: (1) Twitter; (2) YouTube; (3) Instagram; (4) Twitch; (5) DLive; (6) TikTok; (7) 

Daily Motion; and (8) Facebook. Specifically, we test whether the distribution of connections 

(followers, subscribers, or likes) follows a power law distribution for the top 5000 members of 

each social network. We find strong evidence that a power law relationship exists for every 

one of the social networks that we study, although this relationship breaks down for users at 

the top of the connections distribution. Despite the finding of a power law relationship for all 

of these social networks, the degree of inequality in social media connections differs 

substantially across the different networks, with the highest degree of inequality in DLive, and 

the lowest degree in TikTok and YouTube. 
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1. Introduction 

Zipf’s Law describes an empirical regularity that has been observed across multiple domains, 

including the frequency distribution of word usage (Zipf, 1932), the distribution of city sizes 

(Zipf, 1949), the frequency distribution of family names (Zanette and Manrubia, 2001), the 

distribution of commercial success in the music industry (Cox et al., 1995), the market 

capitalisation of large firms (Gabaix and Landier, 2008) and the number of battle deaths in 

wars (Roberts and Turcotte, 1998), among many others. The idea underlying Zipf’s Law is 

that, once elements in a set are ordered from largest to smallest, the resulting distribution of 

ranked data follows a power law (Newman, 2005). This empirical insight has implications for 

the measurement of various real-world phenomena (Clauset et al., 2009), and has been 

observed for a number of internet features, including the inter-domain topology (Faloutsos et 

al., 1999), the popularity of files requested (Cunha et al., 1995), the numbers of unique website 

visitors, website pages, and website links (Adamic and Huberman, 2002), and the distribution 

of the number of email connections (Ebel et al., 2002).  

Despite a number of examples of networks, including online networks, exhibiting power 

law behaviour, power laws in modern social media applications have to date received little 

attention. In this paper, we investigate whether a number of different online social networks, 

of differing sizes, vintages, and growth trajectories, exhibit power law behaviour in relation to 

the number of social network connections. If the number of connections (friends, contacts, 

followers, or subscribers) follows a power law, then this provides an empirical regularity to the 

observed inequality in social media connections. This in turn may have implications for the 

development and maintenance of social capital (Cook, 2014), the diffusion of information 

(Xiong et al., 2012), the propagation of positive and negative messages (Tsugawa and Ohsaki, 

2015; Subramanian, 2017), and trends in populism and other social movements (Kidd and 

McIntosh, 2016; Gerbaudo, 2018; Postill, 2018). 

Specifically, we focus our attention on eight popular international social media networks: 

(1) Twitter; (2) YouTube; (3) Instagram; (4) Twitch; (5) DLive; (6) TikTok; (7) Daily Motion; 

and (8) Facebook. In the case of the first seven social networks, we have cross-sectional data 

on the number of social media connections (friends, contacts, followers, or subscribers) of the 

top 5000 members (or content creators) ranked by the number of connections. For Facebook, 

we have cross-sectional data on the number of ‘likes’ of the top 5000 Facebook pages ranked 

by the number of ‘likes’. We use this data to identify and describe the distribution of 

connections, , to determine the extent to which the number of connections follows a power law 

distribution. We find strong evidence that all eight social networks exhibit power law 

distributions in the number of social media connections, but that this relationship breaks down 

in the upper tail of each distribution. We also find substantial differences in the degree of 

inequality in social media connections across the different networks, with the highest degree 

of inequality in DLive, and the lowest degree in TikTok and YouTube. 
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This paper builds on the extant literature on power law distributions in social networks. 

Ribeiro et al. (2009; 2010) demonstrated that the distribution of MySpace friends exhibited a 

‘double-Pareto’ shape, with a clear break at around 100 friends, and different power law 

relationships above and below this threshold. Falck-Ytter and Overby (2012) found that a 

power law distribution is a good description of the number of views of the 160 most popular 

YouTube videos, but not for the number of followers for the 10,020 most popular Twitter users. 

This contrasts with Hurlimann (2015), who found that a close fit to a power law for the number 

of Twitter followers, as did Oshop and Foss (2015) for the Twitter followers of celebrities. 

Rastogi (2016) showed that a power law distribution approximately holds for the top 12 ranked 

Twitter users, the top 31 celebrities, the top nine politicians, and the top nine sportspeople for 

total tweets, average retweets, and total followers. Enjolras (2014) shows a similar result for 

the number of Twitter followers for 84 Norwegian politicians. We extend those earlier analyses 

to the top 5000 content creators across eight different online social networks. 

The remainder of this paper proceeds as follows. The next section briefly describes the 

eight social networks that we have data for. We then briefly outline the data and methods we 

use, before presenting and discussing our results. The final section concludes. 

2. Eight social media networks 

A social network is a structure of relationships (or ‘links’) and interactions (or 

‘communications’) between people, organisations, and other entities (or ‘nodes’) (Yu and Kak, 

2014). Modern social media networks facilitate this structure using the Internet, providing a 

platform for people to share their ideas and experiences with many others locally or globally. 

We analyse data on eight online social media networks, each of which has distinctive 

features. The first social media network we consider is Twitter, a ‘microblogging’ platform 

that began operation in 2006, and currently has over 330 million registered users.1 On Twitter, 

users post ‘tweets’, which are short (less than 280 characters) text-based messages, or short 

audio or video clips (less than 140 seconds). The key networking aspect of Twitter is that users 

can choose to ‘follow’ other users, thereby ensuring that they always receive notification of 

tweets from the followed user. Users can also forward tweets (‘retweet’) with or without 

additional comment, or ‘like’ tweets, expressing enjoyment or approval of the tweet.  

YouTube is an online video sharing platform owned by Alphabet (formerly Google). 

YouTube began operation as an independent platform in 2005 (and was acquired by Google in 

2006), has about 2 billion active users, and is the second most visited website globally.2 On 

YouTube, users upload videos that are either publicly viewable or may be ‘unlisted’ and 

viewable only by those with access to the particular web link – as of 2019, over 500 hours of 

video content was being uploaded per minute.3 Content creators can generate channels for other 

users to follow. For our purposes, the key networking aspect of YouTube is that users can 

                                                 
1 https://en.wikipedia.org/wiki/Twitter.  
2 https://en.wikipedia.org/wiki/YouTube.  
3 https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-minute/.  

https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/YouTube
https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-minute/
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choose to subscribe to YouTube channels, receiving notifications of new video content. Users 

can also comment on videos, as well as ‘like’ or ‘dislike’ videos.4 

Instagram is an online video and photo sharing platform owned by Meta Platforms 

(formerly Facebook Inc.). Instagram began operation as an independent platform in 2010 (and 

was acquired by Facebook in 2012), and has over 1.3 billion users.5 On Instagram, users post 

content that can be publicly shared or shared only with pre-approved followers. For our 

purposes, the key networking aspect of Instagram is that users can choose to follow other 

Instagram users, receiving notifications of new content. Users can also comment on and ‘like’ 

content. 

Twitch is a video live streaming platform that is commonly used for streaming live video 

gaming. Twitch began operation in 2011 (as a spinoff of the general interest video streaming 

platform Justin.tv), and was acquired by Amazon in 2014. It currently has over 15 million daily 

active users.6 On Twitch, content creators can live stream video gaming sessions or other 

content, which can be viewed by other users either live or on-demand. For our purposes, the 

key networking aspect of Twitch is that users can choose to follow content creators. Users can 

also participate in live chat during live streams or comment on on-demand videos. They can 

also ‘subscribe’ to particular content creators, which provides a regular payment to the creator 

from the user, or can ‘cheer’, which involves donating a small amount of money to them 

through microtransactions. 

DLive is another video live streaming platform. DLive began operation in 2017, and is 

commonly used as an alternative for Twitch, with many similar features, but only 5 million 

daily active users as of 2019.7 Similar to Twitch, users can choose to follow content creators, 

comment on streams and videos, and donate to content creators. 

TikTok is a video-focused platform that is the international version of the Chinese platform 

Douyin, and began operation in 2017. TikTok has over 800 million monthly active users.8 On 

TikTok, users post short videos (of less than three minutes), which often feature music, 

dancing, pranks, jokes or short clips. For our purposes, the key networking aspect of TikTok is 

that users can choose to follow content creators. They can also ‘like’ content, post ‘reaction’ 

or ‘duet’ videos, and can give donations or small gifts to content creators. 

Daily Motion is an online video-sharing platform, similar to YouTube. Daily Motion began 

operation in 2005, and has about 300 million monthly users.9 Similar to YouTube, users can 

follow content creators, like and comment on content. 

Finally, Facebook is an online social media and social networking platform, owned by Meta 

Platforms (formerly Facebook Inc.). Facebook began operation in 2004, and has over 2.85 

                                                 
4 Counts of ‘dislikes’ for each video were no longer displayed from November 2021. 
5 https://www.businessofapps.com/data/instagram-statistics/.  
6 https://en.wikipedia.org/wiki/Twitch_(service).  
7  https://www.globenewswire.com/news-release/2019/07/17/1883829/0/en/DLive-Daily-Active-Users-Grow-
Six-Fold-in-New-Report.html.  
8 https://www.businessofapps.com/data/tik-tok-statistics/.  
9 https://en.wikipedia.org/wiki/Dailymotion.  

https://www.businessofapps.com/data/instagram-statistics/
https://en.wikipedia.org/wiki/Twitch_(service)
https://www.globenewswire.com/news-release/2019/07/17/1883829/0/en/DLive-Daily-Active-Users-Grow-Six-Fold-in-New-Report.html
https://www.globenewswire.com/news-release/2019/07/17/1883829/0/en/DLive-Daily-Active-Users-Grow-Six-Fold-in-New-Report.html
https://www.businessofapps.com/data/tik-tok-statistics/
https://en.wikipedia.org/wiki/Dailymotion
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billion monthly active users.10 Facebook offers a variety of options for sharing and commenting 

on content. Users create networks of friends. However, we focus on Facebook ‘pages’, which 

do not have friend networks. Instead, users can choose to follow Facebook pages, and like and 

comment on content from those pages. 

These eight social networks differ substantially in vintage, network size, type of content, 

and the types of interactions between users. However, they all share a common feature in that 

the underlying network structure is comprised of connections between individual users, or 

between users and content creators. The structure of connections naturally leads to different 

content creators and users having different number of connections. We analyse the distribution 

of the number of connections for each social network, in order to determine whether each 

distribution follows a power law. 

3. Data and Methods 

We use data on the number of social media connections (followers for Twitter, Instagram, 

Twitch, DLive, TikTok, and Daily Motion; subscribers for YouTube; and page likes for 

Facebook pages). These data were collated by the social media analytics website 

socialblade.com, and is limited to the top 5000 content creators or users on each platform. The 

data we use was collated on 30 September 2021. The raw number of social media connections 

in our dataset varies substantially between the social networks. The average number of 

Instagram followers for content creators in our dataset is 9.813 million, while the average 

number of Daily Motion followers is just 2867. We therefore analyse each social network 

separately, and then compare results. 

To illustrate the power law relationships, we follow Gabaix and Landier (2008) by first 

illustrating the distribution of the number of social media connections by plotting the natural 

log of the number of connections against the natural log of rank. However, rather than using 

the absolute value of rank, we instead use rank minus one half, following Gabaix and Ibragimov 

(2011), in order to avoid small sample bias in the estimated power law relationship. A power 

law relationship in the social media connections distribution would appear in these plots as a 

straight line relationship. 

To further quantify the power law relationship for each platform, we then regress the natural 

log of rank (minus one half) on the natural log of the number of social media connections. A 

power law relationship would be found if the coefficient on the number of social media 

connections is statistically significant. Gabaix and Ibragimov (2011) note that OLS standard 

errors are incorrect for this specification, so in addition to the OLS standard errors, we also 

report revised standard errors based on the formula in Gabaix and Ibragimov (2011). 

 

                                                 
10 https://en.wikipedia.org/wiki/Facebook.  

https://en.wikipedia.org/wiki/Facebook
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4. Results 

Figure 1 illustrates the relationship between the natural log of rank (minus one half) and the 

natural log of social media connections, for the first seven social media networks (excluding 

Facebook page likes, which are included in a separate figure in the Appendix, Figure A1). The 

pattern in the relationship is similar for each platform, with a broadly linear shape for most of 

the ranking, becoming noticeably less linear in the tail, i.e. at the top of the distribution of social 

media connections. However, despite the consistent finding of linearity, the distributions 

clearly differ across the social media platforms, in two ways. First, the relative size or 

popularity of each social media network is evident in the clear ranking from left to right across 

Figure 1. DLive and Daily Motion have the smallest numbers of active users, while Instagram 

and YouTube have the most. Second, there are clear differences in the slopes in Figure 1. These 

slopes represent the degree of inequality in the number of social media connections within the 

top 5000 content creators or users in our sample. A flatter slope represents greater inequality,  

with the highest ranked content creators or users having a much higher relative number of 

connections than lower ranked content creators or users within the top 5000. Thus, DLive 

exhibits greater inequality in the number of social median connections than Daily Motion, 

although content creators for those two social networks in our sample have similar average 

numbers of connections, while Twitter and Instagram exhibit greater inequality than YouTube, 

which in turn exhibits greater inequality than TikTok.  

Figure 1. Distribution of number of social media network connections, September 2021 
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The power law relationships are further illustrated in Table 1, which presents the results of 

regression models of the natural log of the number of social media connections against the 

natural log of rank (minus one half). In each case, the relationship is highly statistically 

significant, and the results confirm those illustrated in Figure 1. The adjusted R-squared values 

and the coefficients on the natural log of rank (minus one half) are uniformly high, 

demonstrating a strong linear relationship between the natural log of rank (minus one half) and 

the natural log of the number of social media connections. This demonstrates that the 

distribution may be adequately represented as a power law distribution in each case. 

Table 1. Power law regression results 

Social media network Ln(Rank-1/2) Constant Adjusted R2 

Twitter 

-1.506*** 

(0.007) 

[0.030] 

30.24*** 

(0.112) 

 

0.992 

YouTube 

-1.801*** 

(0.009) 

[0.036] 

35.81*** 

(0.142) 

 

0.990 

Instagram 

-1.522*** 

(0.006) 

[0.030] 

31.52*** 

(0.087) 

 

0.996 

Twitch 

-1.354*** 

(0.008) 

[0.027] 

24.49*** 

(0.095) 

 

0.988 

DLive 

-0.939*** 

(0.006) 

[0.019] 

14.28*** 

(0.112) 

 

0.976 

TikTok 

-1.958*** 

(0.011) 

[0.039] 

37.97*** 

(0.171) 

 

0.984 

Daily Motion 

-1.364*** 

(0.009) 

[0.027] 

17.88*** 

(0.066) 

 

0.981 

Facebook page likes 

-1.616*** 

(0.011) 

[0.032] 

33.26*** 

(0.170) 

 

0.981 

N.B. Each row reports the result of a separate linear regression of ln(connections) on ln(Rank-1/2) for the top 
5000 content creators or users on that network. Robust standard errors are reported in parentheses, with revised 
standard errors based on Gabaix and Ibragimov (2011) in square brackets. *** p<0.01; ** p<0.05; * p<0.1. 

 

Comparing across the different regression models, the difference in slopes that was 

illustrated in Figure 1 is clear, with TikTok having the largest slope coefficient (representing 

the least inequality within the distribution of connections of the top 5000 content creators or 

users), and DLive having the smallest coefficient (and the greatest inequality in connections). 

Along with the other seven social networks, we find similar results (strongly statistically 

significant and linear) for the number of Facebook page likes. 
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However, referring back to Figure 1, it is clear that the linear relationship breaks down at 

the very tail of the distribution for some of the platforms. To further test this relationship, we 

re-estimated each regression model, omitting the top 20 content creators or users for each 

platform. The results are reported in the Appendix, Table A1. These results are similar and, as 

expected, demonstrate an even stronger linear relationship between the natural log of rank 

(minus one half) and the natural log of the number of social media connections, when the users 

at the upper tail of the connections distribution are excluded. 

 

5. Discussion 

In our analysis of eight online social media networks, we found strong evidence for power law 

distributions in the number of social media connections. However, while we contend that our 

results are consistent with power law distributions, we cannot unequivocally rule out other 

distributions, such as the lognormal, Pareto, or double Pareto (Fang et al., 2012). In part, that 

is because our research is based on only the distribution of the number of connections for the 

top 5000 members of each social network, and analysis of a larger sample might reveal that the 

distribution has different characteristics for users with a smaller number of connections. 

Ribeiro et al. (2009; 2010) demonstrate that the distribution of MySpace friends exhibited a 

‘double-Pareto’ shape, with a clear break at around 100 friends, and different power law 

relationships above and below this threshold. Our results are based on users with substantially 

more followers or subscribers than the data observed by Ribeiro et al. (2009; 2010) , and 

therefore could be consistent with a double-Pareto distribution. Our results also demonstrate 

that the power law breaks down for those with the greatest number of connections. As Newman 

(2005) notes, few real-world distributions exhibit a power law relationship over their entire 

range, with most relationships breaking down below some minimum threshold. We observe 

this breakdown of the relationship in the upper tail of the connections distribution for all of the 

online social networks that we studied. 

In this paper, we have not sought to explain the specific mechanism that drives the power 

law distributions observed in our data. That is an exercise for future research, and is all the 

more important given that we have demonstrated the power law relationship holds across a 

multitude of social media networks. However, we note that a power law distribution in a social 

media network could be explained by a ‘Yule process’ (Yule, 1925, Newman 2005). Consider 

a social network with a number of nodes (members or content creators), with each node having 

a number of connections to other nodes (their followers or subscribers). As new members join 

the network, they follow or subscribe to existing members, creating new connections. Now 

assume that these new connections are distributed in proportion to the number existing 

followers or subscribers that content creators already have – a process known as ‘preferential 

attachment’ (Huberman and Adamic, 1999; Adamic and Huberman, 2000). Preferential 

attachment can be justified as an assumption because it is likely that the content creators who 

were previously most popular would continue to attract a disproportionate number of followers 

or subscribers. This multiplicative stochastic process yields a lognormal distribution of the 
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number of followers over time for each content creator (Adamic and Huberman, 2002). Taking 

an exponentially weighted mixture (as would be observed during the growth phase of a social 

media network) of lognormal distributions generates a power law distribution. Beyond the 

growth phase of the social media network, this structure persists into the future, although with 

the addition of new, stochastically generated, shocks in the form of newly-popular content 

creators. This perpetuates the power law distribution of connections into the future. Essentially, 

each social network exhibits a ‘rich get richer’ process, otherwise known as the Gibrat principle 

(Simon, 1955), or the Matthew effect (Merton, 1968). Newman (2005) provides a mathematical 

exposition of the Yule process and how it relates to power law distributions across a range of 

possible applications (see also Reed, 2001). 

Our results also highlight differences in the degree of inequality in social media connections 

across the different networks, with the highest degree of inequality observed for DLive, and 

the lowest degree for TikTok and YouTube. These differences may reflect underlying 

differences in the egalitarian nature of social networks (Peters et al., 2013). Egalitarianism 

might be promoted by the video platforms’ practice of immediately serving users with 

algorithmically-determined content following the conclusion of a particular video. This content 

need not be from a content creator that the user already follows or is subscribed to, but can 

stochastically generate new subscriber or follower connections, reducing inequality in the 

number of connections. Future research should explore these differences in connection 

inequality in greater detail, including how algorithmic content recommendations may reduce 

connection inequality. 

The power law distribution of connections in social networks may lead to a number of 

consequences. Ebel et al. (2002) observed that the structure of email networks facilitates the 

distribution of email viruses. In a communications network with a power law (or ‘scale free’) 

distribution of interactions, a virus can persist within the network without dying out, regardless 

of how infectious or otherwise it is (Pastor-Satorras and Vespignani, 2001b), because the 

distribution of viruses through the network is strongly affected by a small number of nodes 

with a large number of connections (Pastor-Satorras and Vespignani, 2001a). A power law 

distribution in the number of connections within social networks may likewise facilitate the 

distribution of disinformation and misinformation (Wardle and Derakshan, 2017). In an online 

social network, a small number of nodes with a large number of connections can become key 

distributors of disinformation and misinformation. One example of this is the recent 

‘infodemic’ related to coronavirus misinformation (Gabarron et al., 2021). However, the power 

law nature of social networks also suggests countermeasures to the spread of disinformation 

and misinformation, including targeting the flows through nodes with a large number of 

connections. This contrasts with the current approach of surveillance, and improving health 

literacy and knowledge translation (e.g. Eysenbach, 2020; Zarocostas, 2020). The power law 

distribution of social networks can also explain the persistence and marketing effectiveness of 

social media ‘influencers’ – content creators that have a large number of followers or 

subscribers (Francalanci et al., 2015; Toscani et al., 2018). The distribution of information, 

including marketing material and recommendations, is most effective though content creators 
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with a large number of followers. Online social media networks, with power law distributions 

of connections between content creators (including influencers) and other users, can facilitate 

successful marketing and information campaigns. 

 

The analysis in this paper has a number of limitations that should be noted. First, it is based 

on a cross-sectional snapshot of the distribution of social media connections at one point in 

time. While there is no reason to believe that the observed relationship would differ 

significantly for snapshots taken at different points in time, it would be useful to undertake a 

longitudinal analysis. A longitudinal approach would also enable greater understanding of the 

dynamics of the distribution of social media connections, as well as greater exploration of 

whether the newer social media networks such as DLive, which had the highest degree of 

connections inequality in our analysis, are converging to a similar level of inequality to the 

more established networks. Second, our dataset was limited to the top 5000 users of each social 

media network. Extending the analysis to a larger proportion of the user base of each network 

would help in determining whether the distribution of connections exhibits double Pareto 

behaviour, as found by Ribeiro et al. (2009; 2010) for MySpace. Moreover, investigating the 

connections behaviour of new users to each social media platform would allow the ‘Yule 

process’ mechanism to be tested. Third, our analysis was limited to eight social media 

networks, and similar analysis could easily be extended to other networks, where similar data 

are available. 

Despite these limitations, the analysis in this paper covers a wide cross-section of social 

media networks, from long-established large networks such as Facebook and YouTube, to 

newer and smaller networks such as DLive. That a power law distribution is observed for the 

connections in all of these networks suggests that this result is robust, and that further analysis 

of the implications of power law distributions across social media is warranted. 
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Appendix 

 

Figure A1. Distribution of number of Facebook likes, September 2021 
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Table A1. Power law regression results, excluding the top 20 content creators 

Social media network Ln(Rank-1/2) Constant Adjusted R2 

Twitter 

-1.478*** 

(0.003) 

[0.030] 

29.82*** 

(0.043) 

 

0.997 

YouTube 

-1.767*** 

(0.005) 

[0.035] 

35.27*** 

(0.081) 

 

0.993 

Instagram 

-1.511*** 

(0.003) 

[0.030] 

31.33*** 

(0.049) 

 

0.997 

Twitch 

-1.324*** 

(0.004) 

[0.026] 

24.12*** 

(0.046) 

 

0.994 

DLive 

-0.917*** 

(0.004) 

[0.018] 

14.12*** 

(0.030) 

 

0.981 

TikTok 

-1.917*** 

(0.007) 

[0.038] 

37.34*** 

(0.112) 

 

0.988 

Daily Motion 

-1.330*** 

(0.005) 

[0.027] 

17.62*** 

(0.040) 

 

0.988 

Facebook page likes 

-1.576*** 

(0.006) 

[0.032] 

32.62*** 

(0.095) 

 

0.989 

N.B. Each row reports the result of a separate linear regression of ln(connections) on ln(Rank-1/2) for the top 
5000 content creators or users on that network, excluding the top 20 content creators. Robust standard errors are 
reported in parentheses, with revised standard errors based on Gabaix and Ibragimov (2011) in square brackets. 
*** p<0.01; ** p<0.05; * p<0.1. 

 


