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Abstract
We examine relationships between luminosity and local economic growth for counties in China and the US and districts in Indonesia. Many authors estimate treatment effects on local luminosity growth and transfer GDP-luminosity elasticities from elsewhere to calculate economic growth effects. Our insight is that these GDP-luminosity elasticities vary especially by spatial scale and metro status, and also by period and remote sensing source. The elasticities mainly capture extensive margins of luminosity. Measurement errors in popular DMSP data attenuate GDP-luminosity elasticities but aggregation-sensitivity persists even when using instrumental variables estimation. Consequently, claimed growth effects of various treatments may be quite inaccurate.
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I.	Introduction 
The seminal study by Henderson et al. (2012) introducing economists to night-time lights (NTL) data greatly expanded the range of what can be feasibly evaluated in data-poor environments. Whenever and wherever traditional economic activity data, such as GDP, are either absent or not trusted because of concerns about manipulation and error, NTL data might be used instead as a local economic growth proxy when estimating treatment impacts. For example, natural disasters (Heger and Neumayer, 2019; Kocornik-Mina et al., 2020; Joseph, 2022), public health crises (Roberts, 2021; Beyer et al., 2023) and monetary shocks (Chodorow-Reich et al., 2020; Chandra and Cook, 2022) have all recently been evaluated by examining associated changes in night-time lights (luminosity, for short).
To provide a more familiar metric, some authors estimate effects of these treatments on local luminosity growth and then transfer GDP-luminosity elasticities from elsewhere to show economic growth effects. For example, Chodorow-Reich et al. (2020) created quarterly lights variables for Indian districts, using monthly VIIRS data from April 2012 onwards, and estimated a 12 percentage point fall in luminosity with the 2016 demonetization shock.[footnoteRef:1] They then apply a GDP-lights elasticity of 0.3, estimated by Henderson et al. (2012) with annual DMSP data on 188 countries over 1992-2008, to calculate an output decline of 3.6 percentage points from India’s demonetization.[footnoteRef:2] Several questions are raised by this transferring of elasticities from one context to another: do the elasticities vary with the level of spatial aggregation? With the time period? With the remote sensing system providing the NTL data? In other words, is it meaningful to combine a GDPluminosity elasticity that was estimated for annual country-level DMSP data with a treatment effect that is estimated at the district level using sub-annual VIIRS data for a much later period? [1:  VIIRS is the Visible Infrared Imaging Radiometer Suite of remote sensing instruments on the Suomi-NPP and NOAA-20 satellites providing data since 2012. ]  [2:  DMSP is the Defense Meteorological Satellite Program, which is a series of satellites first launched in the 1960s by the US Department of Defense.] 

The next section discusses selected studies using this elasticity transfer approach, which relies on decomposing impacts that various treatments have on economic activity into two parts:  The range of treatments studied has no restriction; some use very finely-grained spatial data, like individual beaches in Barbados of average area 0.02 km2 (Corral and Schling, 2017). In contrast, studies with the  values are necessarily more spatially aggregated because they need GDP data. So the elasticities are generally transferred from spatially aggregated sources to less aggregated contexts. Also, the GDP-luminosity elasticities are often for earlier periods; after Henderson et al. (2012) there is less novelty in reporting GDP-luminosity elasticities so not many updates were published.[footnoteRef:3] This temporal effect makes GDP-luminosity elasticities more likely to be based on DMSP data (the only option prior to 2012) while the treatment effects on luminosity may use data from different remote sensing systems because both DMSP and VIIRS are available since 2012. [3:  An early follower of Henderson et al. (2012) [hereafter, HSW (2012)], whose reported GDP-luminosity elasticities are used by others, is Hodler and Raschky (2014), who used 18 years of DMSP data for 1500 regions (mostly at the first sub-national level) to estimate a GDP-luminosity elasticity of 0.4, compared to 0.3 estimated by HSW with national level data. Some studies eschew published elasticity estimates, instead making an (internal) transfer by estimating their own GDP-luminosity elasticity from somewhere with the necessary GDP data and then applying that estimate to calculate growth effects in their treatment setting (Kim et al., 2023).] 

Our insight in this paper is that these GDP-luminosity elasticities are sensitive to the level of spatial aggregation and to whether they are for metro areas only rather than for samples also covering non-metro areas. In our two developing country examples (China and Indonesia) spatial aggregation inflates the GDP-luminosity elasticities, which also are higher in metro areas than in non-metro areas. In the United States, where luminosity is trending downwards even as GDP continues to grow, these patterns are reversed. The variation that we describe undermines the elasticity transfer approach to calculating economic growth effects of various treatments. We also show that measurement errors in popular DMSP data attenuate GDP-luminosity elasticities but the sensitivity to spatial aggregation persists if instrumental variables estimation is used to mitigate the effects of measurement error.
Our findings differ from influential prior studies that suggested linearity, with similar GDP-luminosity elasticities at country, region, and district level (Hodler and Raschky, 2014; Storeygard, 2016). Even in newer studies that find heterogeneous elasticities, with luminosity less responsive to GDP changes at higher baseline GDP, the relationships were seen as stable across alternative aggregation levels derived from artificial partitioning (Bluhm and McCord, 2022).[footnoteRef:4] Hence, the following view, in a recent applied study, is fairly representative of how researchers likely consider the GDP-luminosity elasticities: [4:  Nevertheless, Bluhm and McCord (2022) have a similar take-home message to ours; caution is needed when applying an elasticity from the literature to specific empirical contexts for wanting to indicate how a change in luminosity in a particular place might translate into GDP growth terms.] 

“…although the relationship between lights and economic activity estimated in HSW (2012) could be different at the local level ..[a]... number of papers have estimated the lights-GDP relationship using subnational data, finding a similar elasticity of GDP to lights as HSW (2012)” (Kocornik-Mina et al, 2020, p.55).
Nevertheless, there have been some cautions: Asher et al (2021) highlight that the assumption of the elasticities being the same at very high and very low levels of geographic aggregation is largely untested, despite use of luminosity as a proxy for local economic growth.
Our results differ from the prior view because we go further down the spatial ladder, examining relationships between GDP and luminosity at county level to get closer to the granularity of many luminosity-treatment estimates. If elasticities are scale dependent, as our results suggest, the fact that prior studies were mostly at national and first sub-national level would tend to find elasticities more alike. We also use three different NTL data sources, of varying accuracy, to examine measurement error effects. Finally, we pay more attention to mechanisms linking changes in economic activity and luminosity, showing that the link is mostly on the extensive margin (changes in illuminated area), creating non-linearities that may get distorted when data are spatially aggregated.
II.	A Selective Review of Elasticity Transfer Studies 
Appendix A provides details on 20 studies where GDP-luminosity elasticities are transferred from an external setting to combine with treatment effects on luminosity. We especially include papers in top journals like AER, QJE, ReStud, RESTAT, and AEJ:Applied, and in top field journals like JDE, JUE, JIE, and JEEM. Scores of other studies have similar features, but we want to show the broad acceptability of the elasticity transfer approach in economics, as seen in the decisions of reviewers and editors at top journals.
	We use a 6-level geographic code, to compare spatial aggregation in the studies where GDP-luminosity elasticities originate with aggregation at the destination (where the treatment effect is actually estimated): national, region/province/state, district, city/county, village, and pixel/micro-grid (<5km). The elasticities originate from studies that, on average, use data at three levels more aggregated than the situation the elasticities are being ‘imported’ into. In some cases, origin and destination studies are at opposite ends of the spectrum, as when a GDP-luminosity elasticity estimated from national level data is applied to a treatment effect estimated with pixel-level data (Kocornik-Mina et al, 2020; Miranda et al, 2020). An inherent assumption of this procedure is that elasticities are invariant to spatial aggregation.
	A persistent finding is that cross-sectional (or ‘between’ in panels) GDP-luminosity elasticities greatly exceed time-series (‘within’) ones.[footnoteRef:5] Across three studies at county and state level in the US and China, cross-sectional elasticities are 10-28 times larger, at close to 1.0, yet time-series elasticities are usually below 0.1 (Chen and Nordhaus, 2019; Gibson and Boe-Gibson, 2021; Zhang and Gibson, 2022). This gap also shows up in predictive power, with R2 values 50-times as large in cross-sections, on average, than for time-series changes.[footnoteRef:6] Hence, changes in luminosity only weakly predict changes in local economic activity, not just for GDP but for other indicators like employment and household expenditures, even when the cross-sectional relationships are far stronger (Goldblatt et al, 2020). Some elasticity transfer studies (e.g. Akter, 2023) apply the far higher cross-sectional elasticities to treatment effects estimated with difference-in-differences from time-series variation in luminosity. An upward bias in the calculated economic growth effects is therefore likely.  [5:  Asher et al (2021) show elasticities of other indicators (e.g. non-farm employment) with respect to luminosity also have this pattern; for Indian villages the cross-sectional elasticity is 0.6 while the time-series elasticity is 38-times smaller, at 0.016.]  [6:  HSW (2012) inadvertently may have exaggerated predictive power of luminosity. They used Stata xtreg with year dummies, which counts the predictive power of the year dummies as part of the within-R2. The reghdfe command lacks this flaw, and when used on their replication data the within-R2 falls from 0.77 to just 0.21.  ] 

	The other feature of the studies in Appendix A is the time gap: the GDP-luminosity elasticities are, on average, from samples with midpoints almost five years before midpoints of samples used to estimate treatment effects. Some gaps are 20 years (Gong et al, 2024). If elasticities evolve, as economic activity shifts from agriculture to services, as lighting types change (e.g. LED replacing halogen), and as satellite sensors improve, old elasticities may, again, lead to inaccurate calculations of economic growth effects.
III.	Simulating aggregation bias in GDP-luminosity elasticities 
The idea that luminosity changes as economic activity fluctuates seems so intuitive that the underlying mechanisms are hardly discussed by applied studies. The seminal HSW (2012, p.999) paper noted that: 
 “consumption of nearly all goods in the evening requires lights. As income rises, so does lights usage per person, in both consumption activities and many investment activities.”
Subsequent studies rarely note that luminosity is now observed at either 1.30am (VIIRS) or 3am (DMSP); well after the usual time of evening consumption.[footnoteRef:7] Which activities generate light detectable from 830 km into space is also rarely discussed. Relevant to this second point is an experiment on DMSP spatial accuracy that temporarily illuminated wilderness areas (to ground-truth with background light ruled out) in winter when nights were darkest (Tuttle et al., 2013). Detection from space required a bank of 1000-watt high pressure sodium lamps (large lamps of about 25 kg each, often used in big warehouses) with reflective shields to help direct light skyward. Even then, lights were detected on only half the nights. [7:  DMSP satellites have unstable orbits, observing Earth earlier as they age. For example, the local overpass time of satellite F18 was ca. 8pm in 2012; by 2019 it had shifted three hours earlier, to ca. 5pm. The 12-hour orbit yields corresponding pre-dawn observations so local overpass times of ca. 3am (for F15 and F16) are used by Ghosh et al (2021) to generate DMSP time-series post-2012.] 

	Perhaps due to the timing of observation and type of lights needed to be detected from space, relationships between changes in economic outcomes and changes in luminosity come mostly from the extensive margin (illuminated area) not the intensive margin. This was first shown in India, where survey-measured poverty varied with changes in lit area but not with changes in brightness (Gibson et al., 2017) and the finding was repeated in Indonesia (Gibson et al., 2023). One caveat is these studies use DMSP data, which has many sources of temporal inconsistency (unstable orbits observing ever-earlier as satellites age, unrecorded changes in sensor amplification over the lunar cycle, lack of inter-satellite calibration), and so it is possible that such data are simply too crude to measure intensive margin effects (as suggested by Gibson et al., 2020). Also, India and Indonesia are early in their urban transition, so extensive margins may change in more dramatic ways than in already urbanized countries.
	Yet already-urbanized economies also show this pattern. We use an 8-year panel (201219) of 3109 counties in the United States to estimate GDP-luminosity elasticities with the more accurate VIIRS data.[footnoteRef:8] The within estimator of the elasticity is 0.18 (with a standard error of 0.03, clustered by county), as we show later in Table 3 below. If we partition the sum of lights into the extensive margin (lit area) and the intensive margin (average radiance of lit areas) the link with GDP changes is entirely on the extensive margin, with an elasticity that is 9-times larger than the intensive margin elasticity (standard errors clustered by county in ( )): [8:  Specifically, we use the masked median version 2.1 VIIRS nighttime lights (VNL) from Elvidge et al (2021).] 


Thus, while annual changes in illuminated area predict annual changes in county-level GDP, changes in (conditional) average radiance do not. Extensive margin changes have ratchet effects; once an area becomes illuminated it rarely goes back to darkness.[footnoteRef:9] Only the most dire long-run circumstances (e.g. Detroit) are likely to have street lights go dark. Intensive margin changes are more easily reversed (e.g. using lights for fewer or more hours). [9:  HSW considered ratchet effects and found none; elasticities were 0.27 in either direction. In contrast, we find elasticities of 0.14 for positive shocks and 0.22 for negative ones; significantly different at p<0.01.] 

	Sensitivity to extensive margin changes fits with established patterns. For example, cross-sectional (‘between’) elasticities greatly exceed time-series (‘within’) ones, aligning with the fact that extensive margin differences are a larger component of between variation (while intensive margin changes contribute more to within variation). Notably, the between estimator values of the GDP-luminosity elasticities for metro areas in developing countries are up to 10times larger than the elasticities for non-metro/rural areas (Gibson et al., 2021) and these metro areas have rapidly changing extensive margins of luminosity. Likewise, the elasticities of agricultural GDP with respect to luminosity are just one-tenth the size of corresponding elasticities for urban activity (Gibson and Boe-Gibson, 2021) and there is very little extensive margin change in luminosity coming from the agricultural sector.
	Consider an example: the Ukraine war raises Iowa farmer incomes (via grain prices) so farmers visit the county diner more often. The diner responds by extending closing time to 9pm and installing outdoor tables illuminated by fluorescent tubes. Satellites are unlikely to detect the extra activity; the change in opening hours is before the 1.30am observation time for VIIRS (or the ca. 3am time for DMSP post-2012) and the new lights will be too weak to detect from space. Richer farmers also buy winter homes in Arizona (‘snowbirds’) and that housing demand shock should be detectable; outdoor halogen lights usually stay on all night at construction sites for security reasons, and once built, street lights stay on all night in growing Phoenix suburbs. So the extensive margin change should be more easily detectable from space than is the intensive margin change. 
	In Appendix B we describe a simulation model with the features described here. The log-luminosity for 1000 micro units comes from Zipf’s Law plus a random error; the largest one-tenth of these micro units are designated as metro areas, the remaining nine-tenths are designated as non-metro. The second period luminosity is from a random growth process, so ranks of the micro units hardly change over time. The log of GDP for each micro unit is predicted from linear functions of log-luminosity plus random errors in each period, with the sectoral elasticities allowed to vary between metro and non-metro areas. From the 1000 first differences that are estimated for the overall sample we obtain the micro-level elasticities as:  To show spatial aggregation effects, every ten units (1 metro and 9 non-metro) are grouped into one larger unit, akin to provinces (each having ten subordinate units). The aggregate elasticity is estimated from the first differences of these 100 groups. We use 1000 bootstrap replications.
	Patterns of micro-level and aggregate elasticities of GDP growth with respect to lights growth are shown in Figure 1. If sectoral elasticities for metro areas happen to greatly exceed the elasticities for non-metro areas (as the empirical results for China show below) spatial aggregation inflates estimates of the first-differenced growth elasticities. For example, a 19point metro-to-non-metro gap in sectoral elasticities (China’s average gap over 2012-19) yields growth elasticities estimated from spatially aggregated units that are more than double the elasticities estimated from micro-level units. This aggregation-sensitivity follows from Jensen’s inequality; logged convex combinations of growth rates exceed convex combinations of logtransformed values (see Appendix B). 
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Figure 1. Varying aggregation-sensitivity of the elasticities of GDP growth with respect to luminosity growth


In contrast, if there are only small or even negative metro/non-metro gaps in sectoral elasticities (as we show below for the US) spatial aggregation reduces the growth elasticities. A gap of ˗3 points in the sectoral elasticities (which is the average for the US over 2012-19) yields growth elasticities estimated from spatially aggregated data that are less than one-half the size of the growth elasticities estimated with the micro-level data. This downward bias is due to the combined effects of the non-linear aggregation and of the random errors in the GDP-luminosity relationship, as we show in Appendix B. Overall, these simulation results suggest that within estimator values of the GDP-luminosity elasticities are not invariant to spatial aggregation, notwithstanding the assumption of invariance that is made by elasticity transfer studies such as those summarized in Appendix A. Moreover, spatial aggregation may raise the elasticities in some contexts and reduce them in others, so there is no rule-of-thumb that could be used as an adjustment when researchers use the elasticity transfer approach.
IV.	Data 
We create sub-national panel databases for the two most populous developing countries with official GDP data at the third (China) or second (Indonesia) sub-national level.[footnoteRef:10] We also use data for the United States, as an urbanized country with high statistical capability (to address GDP measurement error concerns). Aggregating to province/state level from county (China and US) or district (Indonesia) level involves 16-76-fold reductions in observations (there are n=2342, n=3109 and n=497 cross-sectional units at our most spatially disaggregated level in China, the US and Indonesia). This spatial aggregation still leaves sufficient sample size for subsequent estimation, especially with time-series of roughly twenty years for each country. Appendix C has full details on the sources of the GDP data, and on the spatial units and their classification into metro and non-metro areas. [10:  India has privately provided district-level data that are marketed as “GDP” (e.g. see http://www.indicus.net/) but these are not official government data. Few countries have county-level real GDP data; for example, while Europe reports real GDP data disaggregated to NUTS2 level, this involves combining adjacent counties in the UK into one unit and is at the level of provinces/states in several other countries. ] 

Our three sources of NTL data are DMSP, and two flavors of VIIRS: VNL from the Earth Observation Group, who also worked extensively on DMSP (Elvidge et al, 2021); and, NASA Black Marble (BM) data (Román et al, 2018). The BM data differ from VNL in four ways: 16-bit precision (n=65,536 values) rather than 14-bit (while DMSP is just 6-bit); users can choose detection angles, with near-nadir, off-nadir, and all-angles composites; separate data for snow-free and snow-covered nights (as snow alters reflectance); and a stray-light correction was implemented from 2012 onwards (while for VNL it was from 2014). Prior comparisons using Vuong (1989) tests show that models using BM data to predict county GDP are closer to truth than models using VNL data (Zhang and Gibson, 2022), and models using VNL data are closer to truth than models using DMSP data (Gibson, 2021).
We provide full details on the NTL sources in Appendix D. The key contrasts are in terms of spatial precision and temporal consistency. At nadir, the VIIRS sensor is 45-times more spatially precise than DMSP (Elvidge et al., 2013). Off-nadir, DMSP does even worse due to angular viewing effects that enlarge ground footprints (Abrahams et al., 2018). DMSP data are top-coded, so densely populated and brightly lit areas get the same values as lower density, dimmer areas (Bluhm and Krause, 2022). Blurring and top-coding cause DMSP data to make local areas seem more economically alike (thus understating spatial inequality) versus what either BM, GDP, or VNL show (Zhang et al., 2023; Mathen et al., 2024). DMSP data are temporally inconsistent, from unrecorded changes in sensor amplification, orbits that observe earlier as satellites age, and no inter-satellite calibration. While VNL and BM can simultaneously handle both dim and bright lights, with dynamic range covering almost seven orders of magnitude, the range for DMSP is only two orders of magnitude. Finally, annual composites of BM (VNL) data use 3-times (2-times) as many nights per year as the DMSP composites, providing a better basis to measure changes in annual economic activity.
We provide descriptive statistics on our data in Appendix E. The inverse-hyperbolic sine is used to create logarithms of the sum-of-lights for each county-year (or district-year), rather than adding arbitrary constants for dealing with zeroes. The sum-of-lights naturally aggregates, facilitating our comparisons of the elasticities at different geographic levels.[footnoteRef:11] Given that identification of within-estimator elasticities comes from time-series variation, we report time trends for each variable in addition to the means and standard deviations. While luminosity in the United States is trending downwards (for all sensors and time periods), even with ongoing real GDP growth of about two percent per annum, the trend rates of increase for China and Indonesia are consistent with their sum-of-lights doubling roughly every decade.  [11:  Gibson et al. (2024) show the sum-of-lights outperforms lights/area when predicting China’s county GDP.] 

V.	Results
The estimated GDP-luminosity elasticities at different aggregation levels, and for metro versus non-metro areas, and for different periods and NTL sources, are in Table 1 for China, Table 2 for Indonesia, and Table 3 for the United States. Each table has the same structure, where comparing panels A and D shows how elasticities change with spatial aggregation, comparing panels B and C shows differences by metro status, comparing the first three columns shows variation by time period for the same NTL source (DMSP), and the last three columns show differences by NTL data source for the same time period (2012-19).
a. Spatial aggregation
The GDP-luminosity elasticities are greatly inflated by spatial aggregation of the data for China. Across all five columns in Table 1, the province-level elasticities are, on average, six-times larger than the county-level ones. Using just the two most accurate NTL sources (VNL and BM), elasticities are four-times higher after spatial aggregation, rising from the 0.12-0.18 range to 0.44-0.66.[footnoteRef:12] The same pattern holds for Indonesia, where aggregation to provincial-level yields an almost eight-fold rise in elasticities for the 2012-19 period. [12:  These differences are at least 30-times larger than the (county-clustered) standard errors.] 

In contrast, spatial aggregation with US data reduces GDP-luminosity elasticities by one-half on average. The reduced elasticities if the county-level data are spatially aggregated are especially apparent for the two VIIRS data products; the state-level elasticities are just one-third the size of the county-level elasticities with these data. The VIIRS data should have less measurement error than DMSP data (see below) so this aggregation pattern is unlikely to be an artefact. 
The aggregation-sensitivity of the GDP-luminosity elasticities is consistent with the simulation results in Appendix B. The simulations showed that if there was a more elastic relationship between luminosity and GDP growth in metro areas than in non-metro areas, spatial aggregation would raise the elasticities for the overall sample that pools both sectors. Conversely, if the sectoral gap is zero or negative (the GDP-luminosity elasticity is higher in non-metro areas) spatial aggregation reduces the elasticities estimated from the pooled sector sample. The research design used here has the same luminosity and GDP data either grouped together to create state- or province-level aggregates or else disaggregated to their finest level for counties or districts. Hence, this evidence is more compelling than in prior approaches that simply compared elasticities from different studies that happened to be at different levels of spatial aggregation (and that also had different samples and so on).


Table 1. Within estimator results for the GDP-lights elasticity for county-level units and for provinces in China, 2000-2019
	
	DMSP Stable Lights Annual Composites
	
	VIIRS Annual Composites, 2012-2019

	
	2000-2019
	2000-2011
	2012-2019
	VNL V2.1
	Black Marble

	
	A. All county-level and district-level spatial units

	ln(sum of lights)
	0.069
	0.037
	0.050
	0.184
	0.117

	
	(0.007)
	(0.007)
	(0.005)
	(0.011)
	(0.011)

	Number of observations
	77286
	46840
	30446
	18736
	18736

	R-squared (Within)
	0.025
	0.008
	0.017
	0.067
	0.028

	
	B. Urban cores (districts) 

	ln(sum of lights) – metro
	0.376
	0.251
	0.277
	0.324
	0.255

	
	(0.041)
	(0.044)
	(0.038)
	(0.049)
	(0.057)

	Number of observations
	9801
	5940
	3861
	2376
	2376

	R-squared (Within)
	0.115
	0.061
	0.063
	0.105
	0.054

	
	C. Non-metro areas (counties and similar county-level units)

	ln(sum of lights) – non-metro
	0.066
	0.035
	0.049
	0.179
	0.112

	
	(0.007)
	(0.007)
	(0.005)
	(0.012)
	(0.011)

	Number of observations
	67485
	40900
	26585
	16360
	16360

	R-squared (Within)
	0.025
	0.008
	0.018
	0.066
	0.028

	
	D. Province-level

	ln(sum of lights)
	0.410
	0.248
	0.422
	0.660
	0.436

	
	(0.073)
	(0.094)
	(0.118)
	(0.121)
	(0.283)

	Number of observations
	1023
	620
	403
	248
	248

	R-squared (Within)
	0.222
	0.113
	0.165
	0.285
	0.079

	
	
	
	
	
	


Notes: Results are based on strongly balanced panels, and all models include fixed effects for each satellite and year and for each spatial unit (either n=2342 county-level and district-level units in panels A-C or n=31 provinces in panel D), estimated using the reghdfe Stata command. Standard errors are in parentheses and are clustered by county-level unit for panels A-C and by province for panel D. The DMSP annual composites are based on Baugh et al (2010) and Ghosh et al (2021), VNL V2.1 annual composites are the masked medians series based on Elvidge et al (2021) and the Black Marble composites are the all-angle, weighted average of snow-free and snow-covered nights based on series described in Román et al (2018). The dependent variable is ln(GDP).






Table 2. Within estimator results for the GDP-lights elasticity for district-level units and for provinces in Indonesia, 2004-2019
	
	DMSP Stable Lights Annual Composites
	
	VIIRS Annual Composites, 2012-2019

	
	2004-2019
	2004-2011
	2012-2019
	VNL V2.1
	Black Marble

	
	A. All district-level spatial units

	ln(sum of lights)
	0.022
	0.020
	0.006
	0.012
	0.022

	
	(0.007)
	(0.009)
	(0.002)
	(0.004)
	(0.008)

	Number of observations
	11972
	5511
	6461
	3976
	3976

	R-squared (Within)
	0.007
	0.007
	0.007
	0.014
	0.024

	
	B. Urban cores (kota) 

	ln(sum of lights) – metro
	0.080
	0.068
	0.004
	-0.009
	0.011

	
	(0.040)
	(0.035)
	(0.017)
	(0.024)
	(0.073)

	Number of observations
	2401
	1127
	1274
	784
	784

	R-squared (Within)
	0.013
	0.013
	0.000
	0.002
	0.001

	
	C. Non-metro areas (kabupaten)

	ln(sum of lights) – non-metro
	0.022
	0.020
	0.006
	0.014
	0.022

	
	(0.007)
	(0.009)
	(0.002)
	(0.004)
	(0.008)

	Number of observations
	9571
	4384
	5187
	3192
	3192

	R-squared (Within)
	0.007
	0.008
	0.007
	0.022
	0.028

	
	D. Province-level

	ln(sum of lights)
	-0.014
	-0.018
	0.048
	0.093
	0.162

	
	(0.078)
	(0.032)
	(0.031)
	(0.039)
	(0.048)

	Number of observations
	850
	408
	442
	272
	272

	R-squared (Within)
	0.001
	0.002
	0.035
	0.117
	0.218

	
	
	
	
	
	


Notes: Results for the 2012-19 sub-samples are based on strongly balanced panels. There are some missing values of GDP prior to 2010. All models have fixed effects for each satellite and year and for each spatial unit (either n=497 districts in panels A-C or n=34 provinces in panel D), estimated using the reghdfe Stata command. Standard errors are in parentheses and are clustered at district level for panels A-C and by province for panel D. The DMSP annual composites are based on Baugh et al (2010) and Ghosh et al (2021), VNL V2.1 annual composites are the masked medians series based on Elvidge et al (2021) and the Black Marble composites are the all-angle snow-free observations based on series described in Román et al (2018). The dependent variable is ln(GDP).




Table 3. Within estimator results for the GDP-lights elasticity for county-level units and States, United States, 2001-2019
	
	DMSP Stable Lights Annual Composites
	
	VIIRS Annual Composites, 2012-2019

	
	2001-2019
	2001-2011
	2012-2019
	VNL V2.1
	Black Marble

	
	A. All county-level spatial units

	ln(sum of lights)
	0.156
	0.055
	0.051
	0.176
	0.201

	
	(0.029)
	(0.010)
	(0.013)
	(0.030)
	(0.026)

	Number of observations
	96362
	55945
	40417
	24872
	24872

	R-squared (Within)
	0.075
	0.018
	0.013
	0.047
	0.070

	
	B. Counties in urban cores 

	ln(sum of lights) – metro
	0.160
	0.129
	0.041
	0.120
	0.170

	
	(0.046)
	(0.020)
	(0.013)
	(0.027)
	(0.034)

	Number of observations
	13204
	7666
	5538
	3408
	3408

	R-squared (Within)
	0.030
	0.019
	0.007
	0.025
	0.046

	
	C. Non-metropolitan counties

	ln(sum of lights) – non-metro
	0.156
	0.054
	0.050
	0.180
	0.198

	
	(0.030)
	(0.010)
	(0.014)
	(0.031)
	(0.028)

	Number of observations
	83158
	48279
	34879
	21464
	21464

	R-squared (Within)
	0.078
	0.019
	0.013
	0.049
	0.068

	
	D. States (including District of Columbia)

	ln(sum of lights)
	0.099
	0.041
	0.029
	0.066
	0.045

	
	(0.068)
	(0.030)
	(0.016)
	(0.052)
	(0.076)

	Number of observations
	1581
	918
	663
	408
	408

	R-squared (Within)
	0.088
	0.034
	0.008
	0.023
	0.006

	
	
	
	
	
	


Notes: Results are based on strongly balanced panels, and all models include fixed effects for each satellite and year and for each spatial unit (either n=3109 county-level units in panels A-C or n=51 States (including the District of Columbia) in panel D), estimated using the reghdfe Stata command. Standard errors are in parentheses and are clustered by county-level unit for panels A-C and by State for panel D. The DMSP annual composites are based on Baugh et al (2010) and Ghosh et al (2021), VNL V2.1 annual composites are the masked medians series based on Elvidge et al (2021) and the Black Marble composites are the all-angle, weighted average of snow-free and snow-covered nights based on series described in Román et al (2018). The dependent variable is ln(GDP).



b. Metro versus non-metro
The GDP-luminosity elasticities differ greatly between metro and non-metro areas in the two developing countries. This pattern is especially clear in Table 1 for China, where the metro elasticities are 6-times larger than the non-metro ones using the DMSP data. With the two VIIRS data products, the metro elasticities are twice as large. The metro/non-metro gaps in predictive power are of similar scale. Over the period that we study, GDP growth rates in metro and non-metro areas were the same but luminosity grew faster in non-metro areas.[footnoteRef:13] Hence, with faster luminosity growth but similar GDP growth the non-metro elasticities are lower.[footnoteRef:14] Likewise, the pre-2012 period in Indonesia had GDP growth in non-metro areas in the absence of any trend growth in DMSP luminosity, while the metro areas had fast growth in both GDP and luminosity, so the metro elasticity is higher. Since then, the metro and nonmetro elasticities have been more alike (and very close to zero). [13:  These luminosity trends may reflect China’s recent adoption of a more dispersed form of urbanization, with migration to big cities like Beijing and Tianjin increasingly restricted while smaller non-metro urbanized parts of counties grew more rapidly due to relaxed restrictions on in-coming migrants (Li et al., 2024).]  [14:  Local officials in county-level cities have incentives to convert agricultural land into urban use (Lichtenberg and Ding, 2009) and so faster luminosity growth in these non-metro units (partly from land conversion) with no faster GDP growth may imply that there are efficiency costs of this dispersed urbanization.] 

For the United States, elasticities are more alike between metro and non-metro areas. This is especially for the full period, and also since 2012 with DMSP and BM data.[footnoteRef:15] This similarity across sectors may reflect luminosity reaching some saturation level (and is now falling in both metro and non-metro areas and for all three NTL sources) even with ongoing GDP growth. This goes beyond the non-linearities shown by Bluhm and McCord (2022), where luminosity responded less to changes in GDP at higher baseline level of GDP (noting that they estimated luminosity-GDP elasticities rather than GDP-luminosity ones). Several mechanisms may underlie divergent GDP and luminosity trends, such as responses to rising concern about light pollution (Falchi et al, 2019), and changes in lighting types (e.g. LEDs replacing halogen) that affect satellite detection of luminosity.  [15:  In the pre-2012 period, trend GDP growth rates in metro areas exceeded those for non-metro areas and metro areas also had less negative rates of luminosity growth.] 

c. Time period
Comparisons by time period are possible with DMSP data but not with VIIRS due to the short VIIRS time-series. For the most spatially disaggregated units, only slight changes in the elasticities are seen from the pre-2012 subperiod to the 2012-19 subperiod. Aggregating to the province/state level makes temporal changes in the elasticities seem larger; the provincial-level elasticity for China is 70% larger in the second subperiod, while for the US the state-level elasticity is 30% smaller than in the first subperiod. The other apparent pattern is that elasticities based on DMSP are higher in the two-decade full time series in the first column of the tables, than in the sub-period shorter time-series. Given the various sources of measurement error in the DMSP data, the hypothesis of elasticities varying over time (or varying with the length of the time-series) is a question to examine in future when the newer generation sensors have longer time-series.
d. Remote sensing system
For the 2012-19 period we can compare elasticities from the three NTL sources. The DMSP data yield smaller elasticities, especially with the spatially disaggregated data. For the US and China, county-level elasticities when using DMSP data are only 30% the size of elasticities estimated with the more accurate BM and VNL data but after aggregation to province/state level the DMSP elasticities average 67% of the size of the elasticities estimated from BM and VNL data. Measurement error is a plausible explanation for this pattern because blurring and top-coding in DMSP data create spatially mean-reverting measurement errors (Gibson, 2021; Kim et al, 2024). Spatial aggregation is inherently mean-reverting so effects of these errors become less apparent in spatially aggregated data.
In Appendix F we examine biases from measurement errors in luminosity data. We especially aim to assess effects of measurement errors on estimated aggregation sensitivity of GDP-luminosity elasticities. A prior study artificially aggregated US county-level GDP and DMSP data into different configurations of subnational regions, finding that the elasticities were stable as the number of subnational regions decreased (Bluhm and McCord, 2022). This is contrary to the aggregation-sensitivity that we find and so understanding how measurement errors may affect results using DMSP data is important.
There are two pathways for measurement errors in luminosity data to bias estimates of the GDP-luminosity elasticity—an attenuation effect and by mean reversion. Following HSW (2012), let  denote logs of observed luminosity, true GDP, and observed GDP, and
					(1)
,					(2)
 are measurement errors in GDP and luminosity, with variances  (for area j, year t). True GDP variance is  Regressing observed GDP on observed luminosity:
					(3)
yields an estimated GDP-luminosity elasticity that is attenuated with respect to the true 
			(4)
if observed luminosity has any measurement error,  To overcome this issue, HSW (2012) use country statistical capacity ratings to impose parametric assumptions on GDP ‘reliability ratios’  when estimating  Recently, Kim et al. (2023) and Chor and Li (2024) attempt to mitigate attenuation bias by using Instrumental Variables (IV) for equation (3), with lagged luminosity as the instrument.[footnoteRef:16]  [16:  This IV strategy assumes no serial correlation in measurement errors for annual luminosity. Yet errors within the same areas may correlate across years (thus, not random). For example, North-South missing data patterns due to summer glare (Gibson, 2021) or errors from not adjusting for snow-cover (Zhang and Gibson, 2022) tend to affect the same areas each year. Our strategy of using luminosity estimates from a more accurate source (BM) as the IV for the estimates from the less accurate source (DMSP) does not depend on this assumption.] 

This approach is incomplete for DMSP data because IV is only consistent for random measurement error, not non-classical error (Black et al, 2000). DMSP spatial mean-reversion, where  for  creates non-classical errors; prior estimates of  range from 0.4 (Kim et al, 2024) to 0.7 (Gibson, 2021). With mean reversion, the right-hand side of equation (4) becomes:  and so a two-step procedure is needed to recover the true  First, equation (3) is estimated by IV, using more accurate BM data to instrument for potentially error-ridden DMSP data. Second,  is adjusted to allow for effects of mean-reverting errors, using  to give a mean-reverting-adjusted IV (MRA-IV).
Table 4 has county-level and province/state-level GDP-luminosity elasticities for China and the US from OLS and instrumental variables. The ratios of province/state-level estimates to county-level estimates are used to indicate aggregation bias (see, also, Figure 1). China’s province-to-county ratio is 8.4 using OLS on equation (3) with DMSP data. The ratio falls to 3.7 using our MRA-IV procedure. Thus, aggregation-sensitivity of GDP-luminosity elasticities persists, even allowing for effects of DMSP measurement errors. If we, instead, use VNL data as the potentially error-ridden luminosity measure (with BM data, again, as the instrument) the province-to-county ratio is 3.6 (using OLS) or 3.2 (using IV). A lesser effect of mitigating measurement error, compared to the results using DMPS, implies that VNL data are less error-ridden than are DMSP data.


Table 4. Aggregation-sensitivity of the GDP-lights elasticity, with and without adjustment for measurement error
	
	A. China (2012-19, 2342 county-level units and 31 provinces)

	
	DMSP
	
	VNL V2.1

	Measurement 
error
	County
	Province
	Ratio
	County
	Province
	Ratio

	
	(1)
	(2)
	(2)/(1)
	(4)
	(5)
	(5)/(4)

	Ignored
	0.050
	0.422
	8.4
	0.184
	0.660
	3.6

	Mitigated
	0.117
	0.437
	3.7
	0.173
	0.549
	3.2

	
	
	
	
	
	
	

	
	B. United States (2012-19, 3109 county-level units and 51 states (including DC))

	
	DMSP
	
	VNL V2.1

	Measurement 
error
	County
	State
	Ratio
	County
	State
	Ratio

	
	(1)
	(2)
	(2)/(1)
	(4)
	(5)
	(5)/(4)

	Ignored
	0.051
	0.029
	0.6
	0.176
	0.066
	0.4

	Mitigated
	0.202
	0.045
	0.2
	0.442
	0.068
	0.2

	
	
	
	
	
	


Notes: Elasticity values for “measurement error ignored” rows are from Table 1 (China) and Table 3 (United States). The “measurement error mitigated” results are estimated using MRA-IV for DMSP data, and IV for VNL data, where in both cases the Black Marble luminosity estimates are used as the instrumental variables. Details on the IV results are in Appendix F. Other notes are as in Tables 1 and 3.

The US results show little aggregation bias if measurement errors in DMSP data are ignored, with a state-to-county ratio of 0.6. This ratio falls to 0.2 if the DMSP measurement errors are dealt with using our MRA-IV approach. Therefore, findings from Bluhm and McCord (2020) of stable elasticities across different (artificial) aggregation levels may have been affected by DMSP measurement errors. The same state-to-county ratio, of 0.2, comes from using VNL data (with IV) for the US. Thus, the pattern where spatial aggregation reduces estimates of the GDP-luminosity elasticity for the US (and increases them for China) seems to be robust to the possible presence of measurement errors in luminosity data.
VI.	Discussion and Conclusions
Applied economists increasingly use satellite-detected night lights data to estimate treatment effects in settings where conventional economic indicators, like GDP, are unavailable. These estimates are often converted into economic growth terms by transferring GDP-luminosity elasticities from elsewhere. Our results caution against this procedure. The elasticities differ by level of spatial aggregation, between metro and non-metro areas, and between the various remote sensing systems providing the data—especially due to measurement errors in DMSP data. The spatial aggregation issue particularly matters. GDP-luminosity elasticity estimates are typically from spatially aggregated data (as they need GDP data) but are often applied to treatment effects on luminosity from spatially disaggregated data. Using the elasticities from aggregated data to proxy for relationships between local economic growth and luminosity will distort calculated local growth effects if estimated elasticities vary with aggregation.
	Our simulations and empirical results show that spatial aggregation reduces estimated GDP-luminosity elasticities in settings like the United States, and raises them in settings like China and Indonesia. The gap in elasticities for metro versus non-metro areas determines the direction of bias. This gap should be larger when luminosity grows rapidly (as in China and Indonesia, where trends imply a doubling every decade) because illuminating unlit areas (extensive margin changes) is most predictive of changes in local GDP, and metro areas in such countries rapidly expand on extensive margins. GDP-luminosity elasticities estimated from aggregated data will be too large for such places, as a proxy for elasticities that apply at local levels. For example, the 20 elasticity-transfer studies we reviewed used GDP-luminosity elasticities averaging 0.4, when calculating local economic growth effects of treatments (Appendix A). Yet our most spatially disaggregated data for China and Indonesia shows elasticities of about 0.1, so the elasticity transfer approach will exaggerate calculated growth effects. The opposite bias for the US should matter less because US analyses are less reliant on luminosity data, given the other data sources available to measure local economic growth. Thus, biased GDP-luminosity elasticities from using aggregated data are most likely to distort evaluations for developing countries.
	Our results also pose a challenge for studies that do not calculate local growth effects by transferring GDP-luminosity elasticities and, instead, simply report treatment effects on luminosity as if this is a sufficient measure of economic activity (e.g. Elliot et al., 2015). An assumed proportionality between GDP and luminosity (e.g. as in equation (2)) may not hold. The luminosity data available for the past decade are for readings in the very early hours of the morning, between 1.30am and ca. 3am, and so these data cannot measure usual evening activities of households or of many firms. Also, the lights observable from 830 km away are not ordinary household lights or the lights that small enterprises might use. Perhaps because of this, changes in local GDP vary far more with local changes in extensive margins of satellite-detected luminosity than with intensive margin changes. Hence, changes in annual NTL data will only reflect changes in certain types of economic activity (such as converting unlit areas to illuminated areas, especially for lights that stay on all night, like street lights). Many spatially disaggregated units, such as villages or pixels, may experience little change in extensive margins of luminosity from year-to-year even as local economic activity fluctuates. Aggregating over many such local areas will yield stronger relationships, especially in countries where extensive margins of luminosity expand rapidly, even though those stronger relationships may not hold at local levels.
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