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Abstract 

We examine relationships between luminosity and local economic growth for 

counties in China and the US and districts in Indonesia. Many authors estimate 

treatment effects on local luminosity growth and transfer GDP-luminosity 

elasticities from elsewhere to calculate economic growth effects. Our insight is that 

these GDP-luminosity elasticities vary especially by spatial scale and metro status, 

and also by period and remote sensing source. The elasticities mainly capture 

extensive margins of luminosity. Measurement errors in popular DMSP data 

attenuate GDP-luminosity elasticities but aggregation-sensitivity persists even when 

using instrumental variables estimation. Consequently, claimed growth effects of 

various treatments may be quite inaccurate. 
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I. Introduction  

The seminal study by Henderson et al. (2012) introducing economists to night-time lights 

(NTL) data greatly expanded the range of what can be feasibly evaluated in data-poor 

environments. Whenever and wherever traditional economic activity data, such as GDP, are 

either absent or not trusted because of concerns about manipulation and error, NTL data might 

be used instead as a local economic growth proxy when estimating treatment impacts. For 

example, natural disasters (Heger and Neumayer, 2019; Kocornik-Mina et al., 2020; Joseph, 

2022), public health crises (Roberts, 2021; Beyer et al., 2023) and monetary shocks 

(Chodorow-Reich et al., 2020; Chandra and Cook, 2022) have all recently been evaluated by 

examining associated changes in night-time lights (luminosity, for short). 

To provide a more familiar metric, some authors estimate effects of these treatments on 

local luminosity growth and then transfer GDP-luminosity elasticities from elsewhere to show 

economic growth effects. For example, Chodorow-Reich et al. (2020) created quarterly lights 

variables for Indian districts, using monthly VIIRS data from April 2012 onwards, and 

estimated a 12 percentage point fall in luminosity with the 2016 demonetization shock.1 They 

then apply a GDP-lights elasticity of 0.3, estimated by Henderson et al. (2012) with annual 

DMSP data on 188 countries over 1992-2008, to calculate an output decline of 3.6 percentage 

points ሺൌ 0.3 ൈ 0.12ሻ from India’s demonetization.2 Several questions are raised by this 

transferring of elasticities from one context to another: do the elasticities vary with the level of 

spatial aggregation? With the time period? With the remote sensing system providing the NTL 

data? In other words, is it meaningful to combine a GDP-luminosity elasticity that was 

estimated for annual country-level DMSP data with a treatment effect that is estimated at the 

district level using sub-annual VIIRS data for a much later period? 

 
1 VIIRS is the Visible Infrared Imaging Radiometer Suite of remote sensing instruments on the Suomi-NPP and 
NOAA-20 satellites providing data since 2012.  
2 DMSP is the Defense Meteorological Satellite Program, which is a series of satellites first launched in the 
1960s by the US Department of Defense. 
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The next section discusses selected studies using this elasticity transfer approach, which 

relies on decomposing impacts that various treatments have on economic activity into two 

parts: ሺ𝜕𝐺𝐷𝑃 𝜕𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦⁄ ሻ ൈ ሺ𝜕𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦 𝜕𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡⁄ ሻ. The range of treatments 

studied has no restriction; some use very finely-grained spatial data, like individual beaches in 

Barbados of average area 0.02 km2 (Corral and Schling, 2017). In contrast, studies with the 

𝜕𝐺𝐷𝑃 𝜕𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦⁄  values are necessarily more spatially aggregated because they need GDP 

data. So the elasticities are generally transferred from spatially aggregated sources to less 

aggregated contexts. Also, the GDP-luminosity elasticities are often for earlier periods; after 

Henderson et al. (2012) there is less novelty in reporting GDP-luminosity elasticities so not 

many updates were published.3 This temporal effect makes GDP-luminosity elasticities more 

likely to be based on DMSP data (the only option prior to 2012) while the treatment effects on 

luminosity may use data from different remote sensing systems because both DMSP and VIIRS 

are available since 2012. 

Our insight in this paper is that these GDP-luminosity elasticities are sensitive to the 

level of spatial aggregation and to whether they are for metro areas only rather than for samples 

also covering non-metro areas. In our two developing country examples (China and Indonesia) 

spatial aggregation inflates the GDP-luminosity elasticities, which also are higher in metro 

areas than in non-metro areas. In the United States, where luminosity is trending downwards 

even as GDP continues to grow, these patterns are reversed. The variation that we describe 

undermines the elasticity transfer approach to calculating economic growth effects of various 

treatments. We also show that measurement errors in popular DMSP data attenuate GDP-

luminosity elasticities but the sensitivity to spatial aggregation persists if instrumental variables 

 
3 An early follower of Henderson et al. (2012) [hereafter, HSW (2012)], whose reported GDP-luminosity 
elasticities are used by others, is Hodler and Raschky (2014), who used 18 years of DMSP data for 1500 regions 
(mostly at the first sub-national level) to estimate a GDP-luminosity elasticity of 0.4, compared to 0.3 estimated 
by HSW with national level data. Some studies eschew published elasticity estimates, instead making an 
(internal) transfer by estimating their own GDP-luminosity elasticity from somewhere with the necessary GDP 
data and then applying that estimate to calculate growth effects in their treatment setting (Kim et al., 2023). 
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estimation is used to mitigate the effects of measurement error. 

Our findings differ from influential prior studies that suggested linearity, with similar 

GDP-luminosity elasticities at country, region, and district level (Hodler and Raschky, 2014; 

Storeygard, 2016). Even in newer studies that find heterogeneous elasticities, with luminosity 

less responsive to GDP changes at higher baseline GDP, the relationships were seen as stable 

across alternative aggregation levels derived from artificial partitioning (Bluhm and McCord, 

2022).4 Hence, the following view, in a recent applied study, is fairly representative of how 

researchers likely consider the GDP-luminosity elasticities: 

“…although the relationship between lights and economic activity estimated in HSW 

(2012) could be different at the local level ..[a]... number of papers have estimated the 

lights-GDP relationship using subnational data, finding a similar elasticity of GDP to 

lights as HSW (2012)” (Kocornik-Mina et al, 2020, p.55). 

Nevertheless, there have been some cautions: Asher et al (2021) highlight that the assumption 

of the elasticities being the same at very high and very low levels of geographic aggregation is 

largely untested, despite use of luminosity as a proxy for local economic growth. 

Our results differ from the prior view because we go further down the spatial ladder, 

examining relationships between GDP and luminosity at county level to get closer to the 

granularity of many luminosity-treatment estimates. If elasticities are scale dependent, as our 

results suggest, the fact that prior studies were mostly at national and first sub-national level 

would tend to find elasticities more alike. We also use three different NTL data sources, of 

varying accuracy, to examine measurement error effects. Finally, we pay more attention to 

mechanisms linking changes in economic activity and luminosity, showing that the link is 

mostly on the extensive margin (changes in illuminated area), creating non-linearities that may 

get distorted when data are spatially aggregated. 

 
4 Nevertheless, Bluhm and McCord (2022) have a similar take-home message to ours; caution is needed when 
applying an elasticity from the literature to specific empirical contexts for wanting to indicate how a change in 
luminosity in a particular place might translate into GDP growth terms. 
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II. A Selective Review of Elasticity Transfer Studies  

Appendix A provides details on 20 studies where GDP-luminosity elasticities are transferred 

from an external setting to combine with treatment effects on luminosity. We especially include 

papers in top journals like AER, QJE, ReStud, RESTAT, and AEJ:Applied, and in top field 

journals like JDE, JUE, JIE, and JEEM. Scores of other studies have similar features, but we 

want to show the broad acceptability of the elasticity transfer approach in economics, as seen 

in the decisions of reviewers and editors at top journals. 

 We use a 6-level geographic code, to compare spatial aggregation in the studies where 

GDP-luminosity elasticities originate with aggregation at the destination (where the treatment 

effect is actually estimated): national, region/province/state, district, city/county, village, and 

pixel/micro-grid (<5km). The elasticities originate from studies that, on average, use data at 

three levels more aggregated than the situation the elasticities are being ‘imported’ into. In 

some cases, origin and destination studies are at opposite ends of the spectrum, as when a GDP-

luminosity elasticity estimated from national level data is applied to a treatment effect 

estimated with pixel-level data (Kocornik-Mina et al, 2020; Miranda et al, 2020). An inherent 

assumption of this procedure is that elasticities are invariant to spatial aggregation. 

 A persistent finding is that cross-sectional (or ‘between’ in panels) GDP-luminosity 

elasticities greatly exceed time-series (‘within’) ones.5 Across three studies at county and state 

level in the US and China, cross-sectional elasticities are 10-28 times larger, at close to 1.0, yet 

time-series elasticities are usually below 0.1 (Chen and Nordhaus, 2019; Gibson and Boe-

Gibson, 2021; Zhang and Gibson, 2022). This gap also shows up in predictive power, with R2 

values 50-times as large in cross-sections, on average, than for time-series changes.6 Hence, 

 
5 Asher et al (2021) show elasticities of other indicators (e.g. non-farm employment) with respect to luminosity 
also have this pattern; for Indian villages the cross-sectional elasticity is 0.6 while the time-series elasticity is 
38-times smaller, at 0.016. 
6 HSW (2012) inadvertently may have exaggerated predictive power of luminosity. They used Stata xtreg with 
year dummies, which counts the predictive power of the year dummies as part of the within-R2. The reghdfe 
command lacks this flaw, and when used on their replication data the within-R2 falls from 0.77 to just 0.21.   
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changes in luminosity only weakly predict changes in local economic activity, not just for GDP 

but for other indicators like employment and household expenditures, even when the cross-

sectional relationships are far stronger (Goldblatt et al, 2020). Some elasticity transfer studies 

(e.g. Akter, 2023) apply the far higher cross-sectional elasticities to treatment effects estimated 

with difference-in-differences from time-series variation in luminosity. An upward bias in the 

calculated economic growth effects is therefore likely.  

 The other feature of the studies in Appendix A is the time gap: the GDP-luminosity 

elasticities are, on average, from samples with midpoints almost five years before midpoints of 

samples used to estimate treatment effects. Some gaps are 20 years (Gong et al, 2024). If 

elasticities evolve, as economic activity shifts from agriculture to services, as lighting types 

change (e.g. LED replacing halogen), and as satellite sensors improve, old elasticities may, 

again, lead to inaccurate calculations of economic growth effects. 

III. Simulating aggregation bias in GDP-luminosity elasticities  

The idea that luminosity changes as economic activity fluctuates seems so intuitive that the 

underlying mechanisms are hardly discussed by applied studies. The seminal HSW (2012, 

p.999) paper noted that:  

 “consumption of nearly all goods in the evening requires lights. As income rises, so does 

lights usage per person, in both consumption activities and many investment activities.” 

Subsequent studies rarely note that luminosity is now observed at either 1.30am (VIIRS) or 

3am (DMSP); well after the usual time of evening consumption.7 Which activities generate 

light detectable from 830 km into space is also rarely discussed. Relevant to this second point 

is an experiment on DMSP spatial accuracy that temporarily illuminated wilderness areas (to 

ground-truth with background light ruled out) in winter when nights were darkest (Tuttle et al., 

 
7 DMSP satellites have unstable orbits, observing Earth earlier as they age. For example, the local overpass time 
of satellite F18 was ca. 8pm in 2012; by 2019 it had shifted three hours earlier, to ca. 5pm. The 12-hour orbit 
yields corresponding pre-dawn observations so local overpass times of ca. 3am (for F15 and F16) are used by 
Ghosh et al (2021) to generate DMSP time-series post-2012. 
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2013). Detection from space required a bank of 1000-watt high pressure sodium lamps (large 

lamps of about 25 kg each, often used in big warehouses) with reflective shields to help direct 

light skyward. Even then, lights were detected on only half the nights. 

 Perhaps due to the timing of observation and type of lights needed to be detected from 

space, relationships between changes in economic outcomes and changes in luminosity come 

mostly from the extensive margin (illuminated area) not the intensive margin. This was first 

shown in India, where survey-measured poverty varied with changes in lit area but not with 

changes in brightness (Gibson et al., 2017) and the finding was repeated in Indonesia (Gibson 

et al., 2023). One caveat is these studies use DMSP data, which has many sources of temporal 

inconsistency (unstable orbits observing ever-earlier as satellites age, unrecorded changes in 

sensor amplification over the lunar cycle, lack of inter-satellite calibration), and so it is possible 

that such data are simply too crude to measure intensive margin effects (as suggested by Gibson 

et al., 2020). Also, India and Indonesia are early in their urban transition, so extensive margins 

may change in more dramatic ways than in already urbanized countries. 

 Yet already-urbanized economies also show this pattern. We use an 8-year panel 

(2012-19) of 3109 counties in the United States to estimate GDP-luminosity elasticities with 

the more accurate VIIRS data.8 The within estimator of the elasticity is 0.18 (with a standard 

error of 0.03, clustered by county), as we show later in Table 3 below. If we partition the sum 

of lights into the extensive margin (lit area) and the intensive margin (average radiance of lit 

areas) the link with GDP changes is entirely on the extensive margin, with an elasticity that is 

9-times larger than the intensive margin elasticity (standard errors clustered by county in ( )): 

lnሺ𝐺𝐷𝑃ሻ௜௧ ൌ 12.7 ൅ 0.27 lnሺ𝑙𝑖𝑡 𝑎𝑟𝑒𝑎ሻ௜௧ ൅ 0.03 lnሺ𝑎𝑣𝑔 𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒ሻ௜௧ ൅ 𝛾௜ ൅ 𝛿௧ ൅ 𝑢௜௧
ሺ0.04ሻ                             ሺ0.03ሻ                            

 

Thus, while annual changes in illuminated area predict annual changes in county-level GDP, 

changes in (conditional) average radiance do not. Extensive margin changes have ratchet 

 
8 Specifically, we use the masked median version 2.1 VIIRS nighttime lights (VNL) from Elvidge et al (2021). 
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effects; once an area becomes illuminated it rarely goes back to darkness.9 Only the most dire 

long-run circumstances (e.g. Detroit) are likely to have street lights go dark. Intensive margin 

changes are more easily reversed (e.g. using lights for fewer or more hours). 

 Sensitivity to extensive margin changes fits with established patterns. For example, 

cross-sectional (‘between’) elasticities greatly exceed time-series (‘within’) ones, aligning with 

the fact that extensive margin differences are a larger component of between variation (while 

intensive margin changes contribute more to within variation). Notably, the between estimator 

values of the GDP-luminosity elasticities for metro areas in developing countries are up to 

10-times larger than the elasticities for non-metro/rural areas (Gibson et al., 2021) and these 

metro areas have rapidly changing extensive margins of luminosity. Likewise, the elasticities 

of agricultural GDP with respect to luminosity are just one-tenth the size of corresponding 

elasticities for urban activity (Gibson and Boe-Gibson, 2021) and there is very little extensive 

margin change in luminosity coming from the agricultural sector. 

 Consider an example: the Ukraine war raises Iowa farmer incomes (via grain prices) so 

farmers visit the county diner more often. The diner responds by extending closing time to 9pm 

and installing outdoor tables illuminated by fluorescent tubes. Satellites are unlikely to detect 

the extra activity; the change in opening hours is before the 1.30am observation time for VIIRS 

(or the ca. 3am time for DMSP post-2012) and the new lights will be too weak to detect from 

space. Richer farmers also buy winter homes in Arizona (‘snowbirds’) and that housing 

demand shock should be detectable; outdoor halogen lights usually stay on all night at 

construction sites for security reasons, and once built, street lights stay on all night in growing 

Phoenix suburbs. So the extensive margin change should be more easily detectable from space 

than is the intensive margin change.  

 
9 HSW considered ratchet effects and found none; elasticities were 0.27 in either direction. In contrast, we find 
elasticities of 0.14 for positive shocks and 0.22 for negative ones; significantly different at p<0.01. 
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 In Appendix B we describe a simulation model with the features described here. The 

log-luminosity for 1000 micro units comes from Zipf’s Law plus a random error; the largest 

one-tenth of these micro units are designated as metro areas, the remaining nine-tenths are 

designated as non-metro. The second period luminosity is from a random growth process, so 

ranks of the micro units hardly change over time. The log of GDP for each micro unit is 

predicted from linear functions of log-luminosity plus random errors in each period, with the 

sectoral elasticities allowed to vary between metro and non-metro areas. From the 1000 first 

differences that are estimated for the overall sample we obtain the micro-level elasticities as: 

ሺ𝜕ሺ𝑙𝑛ሺ𝐺𝐷𝑃௧ୀଶሻ െ 𝑙𝑛ሺ𝐺𝐷𝑃௧ୀଵሻሻ 𝜕ሺ𝑙𝑛ሺ𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦௧ୀଶሻ െ 𝑙𝑛ሺ𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦௧ୀଵሻ⁄ ሻሻ. To show 

spatial aggregation effects, every ten units (1 metro and 9 non-metro) are grouped into one 

larger unit, akin to provinces (each having ten subordinate units). The aggregate elasticity is 

estimated from the first differences of these 100 groups. We use 1000 bootstrap replications. 

 Patterns of micro-level and aggregate elasticities of GDP growth with respect to lights 

growth are shown in Figure 1. If sectoral elasticities for metro areas happen to greatly exceed 

the elasticities for non-metro areas (as the empirical results for China show below) spatial 

aggregation inflates estimates of the first-differenced growth elasticities. For example, a 

19-point metro-to-non-metro gap in sectoral elasticities (China’s average gap over 2012-19) 

yields growth elasticities estimated from spatially aggregated units that are more than double 

the elasticities estimated from micro-level units. This aggregation-sensitivity follows from 

Jensen’s inequality; logged convex combinations of growth rates exceed convex combinations 

of log-transformed values (see Appendix B). 
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Figure 1. Varying aggregation-sensitivity of the elasticities of GDP growth with respect to luminosity growth 
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In contrast, if there are only small or even negative metro/non-metro gaps in sectoral 

elasticities (as we show below for the US) spatial aggregation reduces the growth elasticities. 

A gap of ˗3 points in the sectoral elasticities (which is the average for the US over 2012-19) 

yields growth elasticities estimated from spatially aggregated data that are less than one-half 

the size of the growth elasticities estimated with the micro-level data. This downward bias is 

due to the combined effects of the non-linear aggregation and of the random errors in the GDP-

luminosity relationship, as we show in Appendix B. Overall, these simulation results suggest 

that within estimator values of the GDP-luminosity elasticities are not invariant to spatial 

aggregation, notwithstanding the assumption of invariance that is made by elasticity transfer 

studies such as those summarized in Appendix A. Moreover, spatial aggregation may raise the 

elasticities in some contexts and reduce them in others, so there is no rule-of-thumb that could 

be used as an adjustment when researchers use the elasticity transfer approach. 

IV. Data  

We create sub-national panel databases for the two most populous developing countries with 

official GDP data at the third (China) or second (Indonesia) sub-national level.10 We also use 

data for the United States, as an urbanized country with high statistical capability (to address 

GDP measurement error concerns). Aggregating to province/state level from county (China 

and US) or district (Indonesia) level involves 16-76-fold reductions in observations (there are 

n=2342, n=3109 and n=497 cross-sectional units at our most spatially disaggregated level in 

China, the US and Indonesia). This spatial aggregation still leaves sufficient sample size for 

subsequent estimation, especially with time-series of roughly twenty years for each country. 

 
10 India has privately provided district-level data that are marketed as “GDP” (e.g. see http://www.indicus.net/) 
but these are not official government data. Few countries have county-level real GDP data; for example, while 
Europe reports real GDP data disaggregated to NUTS2 level, this involves combining adjacent counties in the 
UK into one unit and is at the level of provinces/states in several other countries.  
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Appendix C has full details on the sources of the GDP data, and on the spatial units and their 

classification into metro and non-metro areas. 

Our three sources of NTL data are DMSP, and two flavors of VIIRS: VNL from the 

Earth Observation Group, who also worked extensively on DMSP (Elvidge et al, 2021); and, 

NASA Black Marble (BM) data (Román et al, 2018). The BM data differ from VNL in four 

ways: 16-bit precision (n=65,536 values) rather than 14-bit (while DMSP is just 6-bit); users 

can choose detection angles, with near-nadir, off-nadir, and all-angles composites; separate 

data for snow-free and snow-covered nights (as snow alters reflectance); and a stray-light 

correction was implemented from 2012 onwards (while for VNL it was from 2014). Prior 

comparisons using Vuong (1989) tests show that models using BM data to predict county GDP 

are closer to truth than models using VNL data (Zhang and Gibson, 2022), and models using 

VNL data are closer to truth than models using DMSP data (Gibson, 2021). 

We provide full details on the NTL sources in Appendix D. The key contrasts are in 

terms of spatial precision and temporal consistency. At nadir, the VIIRS sensor is 45-times 

more spatially precise than DMSP (Elvidge et al., 2013). Off-nadir, DMSP does even worse 

due to angular viewing effects that enlarge ground footprints (Abrahams et al., 2018). DMSP 

data are top-coded, so densely populated and brightly lit areas get the same values as lower 

density, dimmer areas (Bluhm and Krause, 2022). Blurring and top-coding cause DMSP data 

to make local areas seem more economically alike (thus understating spatial inequality) versus 

what either BM, GDP, or VNL show (Zhang et al., 2023; Mathen et al., 2024). DMSP data are 

temporally inconsistent, from unrecorded changes in sensor amplification, orbits that observe 

earlier as satellites age, and no inter-satellite calibration. While VNL and BM can 

simultaneously handle both dim and bright lights, with dynamic range covering almost seven 

orders of magnitude, the range for DMSP is only two orders of magnitude. Finally, annual 

composites of BM (VNL) data use 3-times (2-times) as many nights per year as the DMSP 



13 
 

composites, providing a better basis to measure changes in annual economic activity. 

We provide descriptive statistics on our data in Appendix E. The inverse-hyperbolic 

sine is used to create logarithms of the sum-of-lights for each county-year (or district-year), 

rather than adding arbitrary constants for dealing with zeroes. The sum-of-lights naturally 

aggregates, facilitating our comparisons of the elasticities at different geographic levels.11 

Given that identification of within-estimator elasticities comes from time-series variation, we 

report time trends for each variable in addition to the means and standard deviations. While 

luminosity in the United States is trending downwards (for all sensors and time periods), even 

with ongoing real GDP growth of about two percent per annum, the trend rates of increase for 

China and Indonesia are consistent with their sum-of-lights doubling roughly every decade.  

V. Results 

The estimated GDP-luminosity elasticities at different aggregation levels, and for metro versus 

non-metro areas, and for different periods and NTL sources, are in Table 1 for China, Table 2 

for Indonesia, and Table 3 for the United States. Each table has the same structure, where 

comparing panels A and D shows how elasticities change with spatial aggregation, comparing 

panels B and C shows differences by metro status, comparing the first three columns shows 

variation by time period for the same NTL source (DMSP), and the last three columns show 

differences by NTL data source for the same time period (2012-19). 

a. Spatial aggregation 

The GDP-luminosity elasticities are greatly inflated by spatial aggregation of the data for 

China. Across all five columns in Table 1, the province-level elasticities are, on average, six-

times larger than the county-level ones. Using just the two most accurate NTL sources (VNL 

and BM), elasticities are four-times higher after spatial aggregation, rising from the 0.12-0.18 

 
11 Gibson et al. (2024) show the sum-of-lights outperforms lights/area when predicting China’s county GDP. 
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range to 0.44-0.66.12 The same pattern holds for Indonesia, where aggregation to provincial-

level yields an almost eight-fold rise in elasticities for the 2012-19 period. 

In contrast, spatial aggregation with US data reduces GDP-luminosity elasticities by 

one-half on average. The reduced elasticities if the county-level data are spatially aggregated 

are especially apparent for the two VIIRS data products; the state-level elasticities are just one-

third the size of the county-level elasticities with these data. The VIIRS data should have less 

measurement error than DMSP data (see below) so this aggregation pattern is unlikely to be an 

artefact.  

The aggregation-sensitivity of the GDP-luminosity elasticities is consistent with the 

simulation results in Appendix B. The simulations showed that if there was a more elastic 

relationship between luminosity and GDP growth in metro areas than in non-metro areas, 

spatial aggregation would raise the elasticities for the overall sample that pools both sectors. 

Conversely, if the sectoral gap is zero or negative (the GDP-luminosity elasticity is higher in 

non-metro areas) spatial aggregation reduces the elasticities estimated from the pooled sector 

sample. The research design used here has the same luminosity and GDP data either grouped 

together to create state- or province-level aggregates or else disaggregated to their finest level 

for counties or districts. Hence, this evidence is more compelling than in prior approaches that 

simply compared elasticities from different studies that happened to be at different levels of 

spatial aggregation (and that also had different samples and so on). 

 

 
12 These differences are at least 30-times larger than the (county-clustered) standard errors. 
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Table 1. Within estimator results for the GDP-lights elasticity for county-level units and for provinces in China, 2000-2019 
 DMSP Stable Lights Annual Composites VIIRS Annual Composites, 2012-2019 
 2000-2019 2000-2011 2012-2019 VNL V2.1 Black Marble 

 A. All county-level and district-level spatial units 
ln(sum of lights) 0.069 0.037 0.050 0.184 0.117 
 (0.007) (0.007) (0.005) (0.011) (0.011) 
Number of observations 77286 46840 30446 18736 18736 
R-squared (Within) 0.025 0.008 0.017 0.067 0.028 

 B. Urban cores (districts)  
ln(sum of lights) – metro 0.376 0.251 0.277 0.324 0.255 
 (0.041) (0.044) (0.038) (0.049) (0.057) 
Number of observations 9801 5940 3861 2376 2376 
R-squared (Within) 0.115 0.061 0.063 0.105 0.054 

 
C. Non-metro areas (counties and similar county-level units) 

ln(sum of lights) – non-metro 0.066 0.035 0.049 0.179 0.112 
 (0.007) (0.007) (0.005) (0.012) (0.011) 
Number of observations 67485 40900 26585 16360 16360 
R-squared (Within) 0.025 0.008 0.018 0.066 0.028 

 
D. Province-level 

ln(sum of lights) 0.410 0.248 0.422 0.660 0.436 
 (0.073) (0.094) (0.118) (0.121) (0.283) 
Number of observations 1023 620 403 248 248 
R-squared (Within) 0.222 0.113 0.165 0.285 0.079 

      

Notes: Results are based on strongly balanced panels, and all models include fixed effects for each satellite and year and for each spatial unit (either n=2342 county-
level and district-level units in panels A-C or n=31 provinces in panel D), estimated using the reghdfe Stata command. Standard errors are in parentheses and are 
clustered by county-level unit for panels A-C and by province for panel D. The DMSP annual composites are based on Baugh et al (2010) and Ghosh et al (2021), 
VNL V2.1 annual composites are the masked medians series based on Elvidge et al (2021) and the Black Marble composites are the all-angle, weighted average of 
snow-free and snow-covered nights based on series described in Román et al (2018). The dependent variable is ln(GDP). 
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Table 2. Within estimator results for the GDP-lights elasticity for district-level units and for provinces in Indonesia, 2004-2019 
 DMSP Stable Lights Annual Composites VIIRS Annual Composites, 2012-2019 
 2004-2019 2004-2011 2012-2019 VNL V2.1 Black Marble 

 A. All district-level spatial units 
ln(sum of lights) 0.022 0.020 0.006 0.012 0.022 
 (0.007) (0.009) (0.002) (0.004) (0.008) 
Number of observations 11972 5511 6461 3976 3976 
R-squared (Within) 0.007 0.007 0.007 0.014 0.024 

 B. Urban cores (kota)  
ln(sum of lights) – metro 0.080 0.068 0.004 -0.009 0.011 
 (0.040) (0.035) (0.017) (0.024) (0.073) 
Number of observations 2401 1127 1274 784 784 
R-squared (Within) 0.013 0.013 0.000 0.002 0.001 

 
C. Non-metro areas (kabupaten) 

ln(sum of lights) – non-metro 0.022 0.020 0.006 0.014 0.022 
 (0.007) (0.009) (0.002) (0.004) (0.008) 
Number of observations 9571 4384 5187 3192 3192 
R-squared (Within) 0.007 0.008 0.007 0.022 0.028 

 
D. Province-level 

ln(sum of lights) -0.014 -0.018 0.048 0.093 0.162 
 (0.078) (0.032) (0.031) (0.039) (0.048) 
Number of observations 850 408 442 272 272 
R-squared (Within) 0.001 0.002 0.035 0.117 0.218 

      

Notes: Results for the 2012-19 sub-samples are based on strongly balanced panels. There are some missing values of GDP prior to 2010. All models have fixed effects 
for each satellite and year and for each spatial unit (either n=497 districts in panels A-C or n=34 provinces in panel D), estimated using the reghdfe Stata command. 
Standard errors are in parentheses and are clustered at district level for panels A-C and by province for panel D. The DMSP annual composites are based on Baugh et 
al (2010) and Ghosh et al (2021), VNL V2.1 annual composites are the masked medians series based on Elvidge et al (2021) and the Black Marble composites are the 
all-angle snow-free observations based on series described in Román et al (2018). The dependent variable is ln(GDP). 
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Table 3. Within estimator results for the GDP-lights elasticity for county-level units and States, United States, 2001-2019 
 DMSP Stable Lights Annual Composites VIIRS Annual Composites, 2012-2019 
 2001-2019 2001-2011 2012-2019 VNL V2.1 Black Marble 

 A. All county-level spatial units 
ln(sum of lights) 0.156 0.055 0.051 0.176 0.201 
 (0.029) (0.010) (0.013) (0.030) (0.026) 
Number of observations 96362 55945 40417 24872 24872 
R-squared (Within) 0.075 0.018 0.013 0.047 0.070 

 B. Counties in urban cores  
ln(sum of lights) – metro 0.160 0.129 0.041 0.120 0.170 
 (0.046) (0.020) (0.013) (0.027) (0.034) 
Number of observations 13204 7666 5538 3408 3408 
R-squared (Within) 0.030 0.019 0.007 0.025 0.046 

 
C. Non-metropolitan counties 

ln(sum of lights) – non-metro 0.156 0.054 0.050 0.180 0.198 
 (0.030) (0.010) (0.014) (0.031) (0.028) 
Number of observations 83158 48279 34879 21464 21464 
R-squared (Within) 0.078 0.019 0.013 0.049 0.068 

 
D. States (including District of Columbia) 

ln(sum of lights) 0.099 0.041 0.029 0.066 0.045 
 (0.068) (0.030) (0.016) (0.052) (0.076) 
Number of observations 1581 918 663 408 408 
R-squared (Within) 0.088 0.034 0.008 0.023 0.006 

      

Notes: Results are based on strongly balanced panels, and all models include fixed effects for each satellite and year and for each spatial unit (either n=3109 county-
level units in panels A-C or n=51 States (including the District of Columbia) in panel D), estimated using the reghdfe Stata command. Standard errors are in 
parentheses and are clustered by county-level unit for panels A-C and by State for panel D. The DMSP annual composites are based on Baugh et al (2010) and Ghosh 
et al (2021), VNL V2.1 annual composites are the masked medians series based on Elvidge et al (2021) and the Black Marble composites are the all-angle, weighted 
average of snow-free and snow-covered nights based on series described in Román et al (2018). The dependent variable is ln(GDP). 
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b. Metro versus non-metro 

The GDP-luminosity elasticities differ greatly between metro and non-metro areas in the two 

developing countries. This pattern is especially clear in Table 1 for China, where the metro 

elasticities are 6-times larger than the non-metro ones using the DMSP data. With the two 

VIIRS data products, the metro elasticities are twice as large. The metro/non-metro gaps in 

predictive power are of similar scale. Over the period that we study, GDP growth rates in metro 

and non-metro areas were the same but luminosity grew faster in non-metro areas.13 Hence, 

with faster luminosity growth but similar GDP growth the non-metro elasticities are lower.14 

Likewise, the pre-2012 period in Indonesia had GDP growth in non-metro areas in the absence 

of any trend growth in DMSP luminosity, while the metro areas had fast growth in both GDP 

and luminosity, so the metro elasticity is higher. Since then, the metro and non-metro 

elasticities have been more alike (and very close to zero). 

For the United States, elasticities are more alike between metro and non-metro areas. 

This is especially for the full period, and also since 2012 with DMSP and BM data.15 This 

similarity across sectors may reflect luminosity reaching some saturation level (and is now 

falling in both metro and non-metro areas and for all three NTL sources) even with ongoing 

GDP growth. This goes beyond the non-linearities shown by Bluhm and McCord (2022), where 

luminosity responded less to changes in GDP at higher baseline level of GDP (noting that they 

estimated luminosity-GDP elasticities rather than GDP-luminosity ones). Several mechanisms 

may underlie divergent GDP and luminosity trends, such as responses to rising concern about 

 
13 These luminosity trends may reflect China’s recent adoption of a more dispersed form of urbanization, with 
migration to big cities like Beijing and Tianjin increasingly restricted while smaller non-metro urbanized parts 
of counties grew more rapidly due to relaxed restrictions on in-coming migrants (Li et al., 2024). 
14 Local officials in county-level cities have incentives to convert agricultural land into urban use (Lichtenberg 
and Ding, 2009) and so faster luminosity growth in these non-metro units (partly from land conversion) with no 
faster GDP growth may imply that there are efficiency costs of this dispersed urbanization. 
15 In the pre-2012 period, trend GDP growth rates in metro areas exceeded those for non-metro areas and metro 
areas also had less negative rates of luminosity growth. 
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light pollution (Falchi et al, 2019), and changes in lighting types (e.g. LEDs replacing halogen) 

that affect satellite detection of luminosity.  

c. Time period 

Comparisons by time period are possible with DMSP data but not with VIIRS due to the short 

VIIRS time-series. For the most spatially disaggregated units, only slight changes in the 

elasticities are seen from the pre-2012 subperiod to the 2012-19 subperiod. Aggregating to the 

province/state level makes temporal changes in the elasticities seem larger; the provincial-level 

elasticity for China is 70% larger in the second subperiod, while for the US the state-level 

elasticity is 30% smaller than in the first subperiod. The other apparent pattern is that elasticities 

based on DMSP are higher in the two-decade full time series in the first column of the tables, 

than in the sub-period shorter time-series. Given the various sources of measurement error in 

the DMSP data, the hypothesis of elasticities varying over time (or varying with the length of 

the time-series) is a question to examine in future when the newer generation sensors have 

longer time-series. 

d. Remote sensing system 

For the 2012-19 period we can compare elasticities from the three NTL sources. The DMSP 

data yield smaller elasticities, especially with the spatially disaggregated data. For the US and 

China, county-level elasticities when using DMSP data are only 30% the size of elasticities 

estimated with the more accurate BM and VNL data but after aggregation to province/state 

level the DMSP elasticities average 67% of the size of the elasticities estimated from BM and 

VNL data. Measurement error is a plausible explanation for this pattern because blurring and 

top-coding in DMSP data create spatially mean-reverting measurement errors (Gibson, 2021; 

Kim et al, 2024). Spatial aggregation is inherently mean-reverting so effects of these errors 

become less apparent in spatially aggregated data. 
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In Appendix F we examine biases from measurement errors in luminosity data. We 

especially aim to assess effects of measurement errors on estimated aggregation sensitivity of 

GDP-luminosity elasticities. A prior study artificially aggregated US county-level GDP and 

DMSP data into different configurations of subnational regions, finding that the elasticities 

were stable as the number of subnational regions decreased (Bluhm and McCord, 2022). This 

is contrary to the aggregation-sensitivity that we find and so understanding how measurement 

errors may affect results using DMSP data is important. 

There are two pathways for measurement errors in luminosity data to bias estimates of 

the GDP-luminosity elasticity—an attenuation effect and by mean reversion. Following HSW 

(2012), let 𝑥,𝑦, and 𝑧 denote logs of observed luminosity, true GDP, and observed GDP, and 

𝑧௝௧ ൌ 𝑦௝௧ ൅ 𝜀௭,௝௧     (1) 

𝑥௝௧ ൌ 𝛽𝑦௝௧ ൅ 𝜀௫,௝௧,     (2) 

𝜀௭,௝௧ and 𝜀௫,௝௧ are measurement errors in GDP and luminosity, with variances 𝜎௭ଶ and 𝜎௫ଶ (for 

area j, year t). True GDP variance is 𝜎௬ଶ. Regressing observed GDP on observed luminosity: 

𝑧௝௧ ൌ 𝜓𝑥௝௧ ൅ 𝑢௝௧     (3) 

yields an estimated GDP-luminosity elasticity that is attenuated with respect to the true 1 𝛽⁄ : 

𝑝𝑙𝑖𝑚 𝜓෠௫,௅ௌ ൌ
௖௢௩ሺ௫,௭ሻ

௩௔௥ሺ୶ሻ
ൌ

ఉఙ೤మ

ఉమఙ೤
మାఙೣ

మ ൌ
ଵ

ఉ
൬

ఉమఙ೤మ

ఉమఙ೤
మାఙೣ

మ൰   (4) 

if observed luminosity has any measurement error, 𝜎௫ଶ ൐ 0. To overcome this issue, HSW 

(2012) use country statistical capacity ratings to impose parametric assumptions on GDP 

‘reliability ratios’ ൫𝜎௬ଶ ሺ𝜎௬ଶ ൅ 𝜎௭ଶሻൗ ൯ when estimating 𝛽. Recently, Kim et al. (2023) and Chor 

and Li (2024) attempt to mitigate attenuation bias by using Instrumental Variables (IV) for 

equation (3), with lagged luminosity as the instrument.16  

 
16 This IV strategy assumes no serial correlation in measurement errors for annual luminosity. Yet errors within 
the same areas may correlate across years (thus, not random). For example, North-South missing data patterns 
due to summer glare (Gibson, 2021) or errors from not adjusting for snow-cover (Zhang and Gibson, 2022) tend 
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This approach is incomplete for DMSP data because IV is only consistent for random 

measurement error, not non-classical error (Black et al, 2000). DMSP spatial mean-reversion, 

where 𝑥஽ெௌ௉,௝௧ ൌ 𝜃 ൅ 𝜆𝑥௏ூூோௌ,௝௧ ൅ 𝑣௝௧ for 𝜆መ ൏ 1, creates non-classical errors; prior estimates 

of 𝜆መ range from 0.4 (Kim et al, 2024) to 0.7 (Gibson, 2021). With mean reversion, the right-

hand side of equation (4) becomes: 
ଵ

ఒఉ
൬

ఒమఉమఙ೤మ

ఒమఉమఙ೤
మାఙೣ

మ൰ and so a two-step procedure is needed to 

recover the true 1 𝛽⁄ . First, equation (3) is estimated by IV, using more accurate BM data to 

instrument for potentially error-ridden DMSP data. Second, 𝜓෠௫,ூ௏ is adjusted to allow for 

effects of mean-reverting errors, using 1 𝜆መ,⁄  to give a mean-reverting-adjusted IV (MRA-IV). 

Table 4 has county-level and province/state-level GDP-luminosity elasticities for China 

and the US from OLS and instrumental variables. The ratios of province/state-level estimates 

to county-level estimates are used to indicate aggregation bias (see, also, Figure 1). China’s 

province-to-county ratio is 8.4 using OLS on equation (3) with DMSP data. The ratio falls to 

3.7 using our MRA-IV procedure. Thus, aggregation-sensitivity of GDP-luminosity elasticities 

persists, even allowing for effects of DMSP measurement errors. If we, instead, use VNL data 

as the potentially error-ridden luminosity measure (with BM data, again, as the instrument) the 

province-to-county ratio is 3.6 (using OLS) or 3.2 (using IV). A lesser effect of mitigating 

measurement error, compared to the results using DMPS, implies that VNL data are less error-

ridden than are DMSP data. 

 
to affect the same areas each year. Our strategy of using luminosity estimates from a more accurate source (BM) 
as the IV for the estimates from the less accurate source (DMSP) does not depend on this assumption. 
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Table 4. Aggregation-sensitivity of the GDP-lights elasticity, with and without adjustment for measurement error 
 A. China (2012-19, 2342 county-level units and 31 provinces) 
 DMSP VNL V2.1 
Measurement  
error 

County Province Ratio County Province Ratio 
(1) (2) (2)/(1) (4) (5) (5)/(4) 

Ignored 0.050 0.422 8.4 0.184 0.660 3.6 

Mitigated 0.117 0.437 3.7 0.173 0.549 3.2 
       

 B. United States (2012-19, 3109 county-level units and 51 states (including DC)) 
 DMSP VNL V2.1 
Measurement  
error 

County State Ratio County State Ratio 
(1) (2) (2)/(1) (4) (5) (5)/(4) 

Ignored 0.051 0.029 0.6 0.176 0.066 0.4 

Mitigated 0.202 0.045 0.2 0.442 0.068 0.2 
      

Notes: Elasticity values for “measurement error ignored” rows are from Table 1 (China) and Table 3 (United States). The “measurement error mitigated” 
results are estimated using MRA-IV for DMSP data, and IV for VNL data, where in both cases the Black Marble luminosity estimates are used as the 
instrumental variables. Details on the IV results are in Appendix F. Other notes are as in Tables 1 and 3. 
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The US results show little aggregation bias if measurement errors in DMSP data are 

ignored, with a state-to-county ratio of 0.6. This ratio falls to 0.2 if the DMSP measurement 

errors are dealt with using our MRA-IV approach. Therefore, findings from Bluhm and 

McCord (2020) of stable elasticities across different (artificial) aggregation levels may have 

been affected by DMSP measurement errors. The same state-to-county ratio, of 0.2, comes 

from using VNL data (with IV) for the US. Thus, the pattern where spatial aggregation reduces 

estimates of the GDP-luminosity elasticity for the US (and increases them for China) seems to 

be robust to the possible presence of measurement errors in luminosity data. 

VI. Discussion and Conclusions 

Applied economists increasingly use satellite-detected night lights data to estimate treatment 

effects in settings where conventional economic indicators, like GDP, are unavailable. These 

estimates are often converted into economic growth terms by transferring GDP-luminosity 

elasticities from elsewhere. Our results caution against this procedure. The elasticities differ by 

level of spatial aggregation, between metro and non-metro areas, and between the various 

remote sensing systems providing the data—especially due to measurement errors in DMSP 

data. The spatial aggregation issue particularly matters. GDP-luminosity elasticity estimates 

are typically from spatially aggregated data (as they need GDP data) but are often applied to 

treatment effects on luminosity from spatially disaggregated data. Using the elasticities from 

aggregated data to proxy for relationships between local economic growth and luminosity will 

distort calculated local growth effects if estimated elasticities vary with aggregation. 

 Our simulations and empirical results show that spatial aggregation reduces estimated 

GDP-luminosity elasticities in settings like the United States, and raises them in settings like 

China and Indonesia. The gap in elasticities for metro versus non-metro areas determines the 

direction of bias. This gap should be larger when luminosity grows rapidly (as in China and 

Indonesia, where trends imply a doubling every decade) because illuminating unlit areas 



24 
 

(extensive margin changes) is most predictive of changes in local GDP, and metro areas in such 

countries rapidly expand on extensive margins. GDP-luminosity elasticities estimated from 

aggregated data will be too large for such places, as a proxy for elasticities that apply at local 

levels. For example, the 20 elasticity-transfer studies we reviewed used GDP-luminosity 

elasticities averaging 0.4, when calculating local economic growth effects of treatments 

(Appendix A). Yet our most spatially disaggregated data for China and Indonesia shows 

elasticities of about 0.1, so the elasticity transfer approach will exaggerate calculated growth 

effects. The opposite bias for the US should matter less because US analyses are less reliant on 

luminosity data, given the other data sources available to measure local economic growth. 

Thus, biased GDP-luminosity elasticities from using aggregated data are most likely to distort 

evaluations for developing countries. 

 Our results also pose a challenge for studies that do not calculate local growth effects 

by transferring GDP-luminosity elasticities and, instead, simply report treatment effects on 

luminosity as if this is a sufficient measure of economic activity (e.g. Elliot et al., 2015). An 

assumed proportionality between GDP and luminosity (e.g. as in equation (2)) may not hold. 

The luminosity data available for the past decade are for readings in the very early hours of the 

morning, between 1.30am and ca. 3am, and so these data cannot measure usual evening 

activities of households or of many firms. Also, the lights observable from 830 km away are 

not ordinary household lights or the lights that small enterprises might use. Perhaps because of 

this, changes in local GDP vary far more with local changes in extensive margins of satellite-

detected luminosity than with intensive margin changes. Hence, changes in annual NTL data 

will only reflect changes in certain types of economic activity (such as converting unlit areas 

to illuminated areas, especially for lights that stay on all night, like street lights). Many spatially 

disaggregated units, such as villages or pixels, may experience little change in extensive 

margins of luminosity from year-to-year even as local economic activity fluctuates. 
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Aggregating over many such local areas will yield stronger relationships, especially in 

countries where extensive margins of luminosity expand rapidly, even though those stronger 

relationships may not hold at local levels. 
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Appendices 

A. Selected Studies Using Transferred GDP-Luminosity Elasticities  

We reviewed papers that especially were published in top general interest and top field journals 
in economics to find examples of studies that rely on transferring GDP-luminosity elasticities 
from one context to another. The details are in Table A.1. Across the 20 studies that we include, 
the mean value of the GDP-luminosity elasticity transferred from elsewhere is 0.41 (standard 
deviation 0.17, with a range from 0.2 to 0.9). The modal value of the transferred elasticities is 
0.3, reflecting the high reliance on the GDP-luminosity elasticity estimate originally made by 
HSW (2012).  

To provide quantitative evidence on the spatial mismatch between the “origin” studies where the 
GDP-luminosity elasticities had originally been estimated and the “destination” studies that these 
elasticities are transferred into, to enable calculation of the local economic growth effects of 
various treatments we categorized each study according to a 6-level geographic code with the 
following categories: 1) national, 2) region/province/state, 3) district, 4) city/county, 5) village, 
and 6) pixel/micro-grid (<5km). The average origin study for the GDP-luminosity elasticities has 
a geographic aggregation level of 1.7 on our 6-point scale (where “1” is most aggregated and 
“6” is least aggregated) and the modal value is 1 (in other words, national or cross-country data 
are the most common type of data used to provide the elasticities, while the average across all the 
studies is somewhere between the national level and the first sub-national level). The destination 
studies where the elasticities are “imported” into are far more spatially disaggregated, having an 
average value of 4.4 on our 6-point scale, which corresponds to the city/county level. Thus, the 
typical elasticity transfer study involves taking a GDP-luminosity from an origin setting that is 
about three steps more aggregated on our 6-point scale than is the destination context. 

There is also a temporal gap, between the time-series for the samples used in the origin studies 
and the samples used in the destination studies. On average, this gap is about five years, at the 
midpoint of each of the time-series. Once there is a longer time-series of luminosity data from 
VIIRS the issue of temporal evolution of the GDP-luminosity elasticities could be examined with 
these more accurate data. Currently, however, only the time-series for DMSP is sufficiently long 
enough to study changes in elasticities over time, and the various sources of temporal instability 
in DMSP data (such as lack of calibration and shifts in orbit as satellites age) limit the usefulness 
of these data for studying temporal changes in the GDP-luminosity elasticities.  
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B. Simulating Aggregation Bias in GDP-luminosity Elasticities 

We use simulation models to study how spatial aggregation alters the ‘within estimator’ values 
of GDP-luminosity elasticities. Our simulations estimate the elasticities using first-differenced 
models, as a simple way to estimate relationships between GDP growth and luminosity growth. 
We also develop analytical expressions to explain the patterns coming from the simulations. 

Our main simulations allow for size differences between two types of micro-level units – ‘metro’ 
and ‘non-metro’ (where the average metro unit is n-times larger, in terms of GDP or luminosity, 
than the average non-metro unit). These simulations show the most detectable effects of spatial 
aggregation; for example, for a situation like China where metro elasticities exceed non-metro 
ones, aggregation causes a clear upward bias in the first-differenced elasticity. Conversely, in a 
situation like the United States, where metro elasticities are slightly smaller than non-metro ones, 
the simulations show that spatial aggregation causes the first differenced elasticity to be biased 
downwards. We describe the gap between the micro-level and aggregated elasticities as ‘bias’ 
because in the elasticity transfer studies described in Appendix A, the elasticities estimated from 
more spatially aggregated data (the “origin” studies) are being used as a proxy for unavailable 
GDP-luminosity elasticities at the more micro level (of the “destination” studies) corresponding 
to the aggregation level of the spatial units where the effects of treatment on luminosity are 
estimated. Thus, any distortion to micro-level elasticities is treated as an aggregation bias in our 
framework because the micro-level GDP-luminosity elasticity would be the one used to estimate 
local economic growth effects of the treatment if these micro-level elasticities were available. 

The specifics of the simulation are as follows (Stata code is reported below). Log-luminosity for 
1000 micro units in the first period comes from Zipf’s Law plus a random error; the largest one-
tenth of these micro units are designated as metro areas, the remaining nine-tenths are designated 
as non-metro areas. Second period luminosity is generated from a random growth process, so the 
ranks of the micro units hardly change over time.  The log-GDP for each micro unit is predicted 
from linear functions of log-luminosity plus random errors in each period, the sectoral elasticities 
differ between the metro units and the non-metro units (the predictive functions are the inverse 
of production function relationships, for reasons set out by HSW (2012)). We vary these metro 
and non-metro elasticities in our simulations. The 1000 first differences yield micro-level growth 
elasticities: ሺ𝜕ሺ𝑙𝑛ሺ𝐺𝐷𝑃௧ୀଶሻ െ 𝑙𝑛ሺ𝐺𝐷𝑃௧ୀଵሻሻ 𝜕ሺ𝑙𝑛ሺ𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦௧ୀଶሻ െ 𝑙𝑛ሺ𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦௧ୀଵሻ⁄ ሻሻ. In other 
words, these are the ‘within estimator’ elasticities based on time-series variation, which are the 
correct ones for comparing with our empirical results for China, Indonesia and the US, and for 
informing the vast majority of elasticity transfer studies. To show the effects of spatial 
aggregation every ten units (1 metro and 9 non-metro) are grouped into one larger unit, that can 
be thought of as akin to a province or state. The aggregate elasticity is then estimated from the 
first differences of these 100 groups. We use 1000 bootstrap replications. 

To link to our subsequent analytical expressions, we can express the predicting equations as: 
Metro: 𝑙𝑛ሺ𝐺𝐷𝑃௜௧ሻ ൌ 𝛾 ൅ 𝛼 𝑙𝑛ሺ𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦௜௧ሻ ൅ 𝑢௜௧ 

Non-metro: 𝑙𝑛ሺ𝐺𝐷𝑃௜௧ሻ ൌ 𝛾 ൅ 𝛽 𝑙𝑛ሺ𝑙𝑢𝑚𝑖𝑛𝑜𝑠𝑖𝑡𝑦௜௧ሻ ൅ 𝑢௜௧ 
In the simulations we vary the values of 𝛼 and 𝛽, with particular interest in how the micro-level 
and aggregate elasticities for the first-differenced data evolve as the gap between 𝛼 and 𝛽 varies, 
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or reverses. We impose the constraint that 𝛼 ൅ 𝛽 ൌ 0.41, to reflect the range of differences we see 
in the metro and non-metro elasticities in the empirical results from our three samples. This also 
serves to put a feasible limit on the number of different simulations conducted. 

Table B.1 provides a summary from the main set of simulations, where different values of 𝛼 and 
𝛽 are used, and the micro level within estimator elasticity is estimated using all 1000 units, and 
then the aggregate level elasticity is estimated from the 100 aggregated units. The estimates for 
each row of the table are each repeated 1000 times (with standard deviations of these replicates 
providing the standard errors reported in the table). 

Table B.1: Within estimator GDP-luminosity elasticities for micro-level units and for 
spatially aggregated units, based on differences in the metro/non-metro elasticity gap. 

   Micro-level Aggregated 
Metro 

elasticity 
(100 units) 

Non-metro 
elasticity 

(900 units) 

Metro to 
non-metro 

gap 

Within 
estimator 
elasticity Std Error 

Within 
estimator 
elasticity Std Error 

0.40 0.01 0.39 0.049 0.006 0.526 0.041 
0.39 0.02 0.37 0.057 0.006 0.506 0.040 
0.38 0.03 0.35 0.065 0.006 0.487 0.038 
0.37 0.04 0.33 0.073 0.006 0.463 0.035 
0.36 0.05 0.31 0.081 0.005 0.439 0.035 
0.35 0.06 0.29 0.089 0.005 0.414 0.032 
0.34 0.07 0.27 0.097 0.005 0.389 0.029 
0.33 0.08 0.25 0.105 0.004 0.362 0.028 
0.32 0.09 0.23 0.113 0.004 0.334 0.025 
0.31 0.10 0.21 0.121 0.004 0.306 0.023 
0.30 0.11 0.19 0.129 0.004 0.277 0.021 
0.29 0.12 0.17 0.137 0.004 0.249 0.018 
0.28 0.13 0.15 0.145 0.004 0.223 0.016 
0.27 0.14 0.13 0.153 0.004 0.197 0.013 
0.26 0.15 0.11 0.161 0.003 0.173 0.011 
0.25 0.16 0.09 0.169 0.003 0.152 0.011 
0.24 0.17 0.07 0.177 0.003 0.134 0.010 
0.23 0.18 0.05 0.185 0.003 0.117 0.009 
0.22 0.19 0.03 0.193 0.003 0.104 0.010 
0.21 0.20 0.01 0.201 0.003 0.093 0.011 
0.20 0.21 -0.01 0.209 0.003 0.084 0.012 
0.19 0.22 -0.03 0.217 0.003 0.079 0.013 

Note: Results are based on 1000 bootstrap replications for each set of metro/non-metro gaps. 
 

When there is a large (positive) gap between the metro and non-metro elasticities, spatial 
aggregation increases the within estimator values of the growth elasticities. For example, with an 
elasticity gap of 0.19, which is about what is reported below for China, the elasticity estimated 
with the spatially aggregated data is about double the magnitude of what is estimated with the 
micro-level data (0.28 versus 0.13). This aggregation bias has deterministic and random 
components. For the deterministic part, consider the two groups (metro and non-metro) with 𝜃 
proportion having an elasticity of 𝛼 and ሺ1 െ 𝜃) proportion having an elasticity of 𝛽 (in our 
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simulation, 𝜃 ൌ 0.1ሻ. It is then instructive to see what happens when luminosity (ln 𝑥) eventually 
doubles in each area and relatedly the predicted GDP (ln 𝑦) increases by 𝛼 and β for each group 
respectively. We first consider the less realistic case where there is no size differential for the 
two groups (that is, the GDP and luminosity of each metro area is, on average, no larger than for 
each non-metro area, so n=1). We then consider the more realistic case, where the metro areas 
are, on average, larger than the non-metro areas (in terms of luminosity or GDP, by some factor 
n>1). With these assumptions we have three within estimator values of 𝜑, the GDP-luminosity 
elasticity, to consider:   
  

 𝜑୫୧ୡ୰୭ ൌ 𝜃
௟௡ሺଵାఈሻ௫ି௟௡௫

୪୬ଶ୶ି୪୬୶
൅ ሺ1 െ 𝜃ሻ

௟௡ሺଵାఉሻ௫ି௟௡௫

୪୬ଶ୶ି୪୬୶
ൌ

ଵ

୪୬ଶ
ሾ𝜃lnሺ1 ൅ 𝛼ሻ ൅ ሺ1 െ 𝜃ሻlnሺ1 ൅ 𝛽ሻሿ      (1) 

 

 𝜑ୟ୥୥୰ୣ୥ୟ୲ୣୢ ൌ
௟௡ሾఏሺଵାఈሻ௫ାሺଵିఏሻሺଵାఉሻ௫ሿି௟௡ଶ௫

୪୬ସ୶ି୪୬ଶ୶
ൌ

ଵ

୪୬ଶ
lnሾ𝜃ሺ1 ൅ 𝛼ሻ ൅ ሺ1 െ 𝜃ሻሺ1 ൅ 𝛽ሻሿ      (2) 

 

 𝜑ୟ୥୥୰ୣ୥ୟ୲ୣୢ,   ୱ୧୸ୣ ୢ୧୤୤ ൌ
௟௡ሾఏሺଵାఈሻ௡௫ାሺଵିఏሻሺଵାఉሻ௫ሿି௟௡ሺ୬ାଵሻ௫

୪୬ଶሺ୬ାଵሻ୶ି୪୬ሺ୬ାଵሻ୶
ൌ

ଵ

୪୬ଶ
lnሾ

୬ఏሺଵାఈሻାሺଵିఏሻሺଵାఉሻ

௡ఏାሺଵିఏሻ
ሿ      (3) 

 

These assumptions yield the following rankings: 𝜑୫୧ୡ୰୭ ൏ 𝜑ୟ୥୥୰ୣ୥ୟ୲ୣୢ if 𝛼 ൐ 𝛽. This inequality 
shows that spatial aggregation will inflate the GDP-luminosity elasticity under these conditions, 
where this follows from Jensen's inequality; the log transformed value of a convex combination 
of two growth rates is greater than the convex combination of the log-transformed values. Once 
we allow for size differences between the metro and non-metro areas, we have a further ranking, 
as follows: 𝜑୫୧ୡ୰୭ ൏ 𝜑ୟ୥୥୰ୣ୥ୟ୲ୣୢ ൏ 𝜑ୟ୥୥୰ୣ୥ୟ୲ୣୢ,   ୱ୧୸ୣ ୢ୧୤୤ if 𝛼 ൐ 𝛽 and 𝑛 ൐ 1.  

The density charts in Figure B.1 from the simulations (for a metro/non-metro gap of 0.19, which 
is similar to the values that we estimate below for China) show that the sharpest evidence on 
aggregation bias comes from the size-differentiated case. Specifically, with these parameter 
values the simulations do not produce any overlap between the distribution of the micro-level 
elasticities, which are tightly bunched around 0.13, and the elasticities from the spatially 
aggregated data, which are less tightly bunched but are centered on a value of 0.28. In contrast, if 
we use the less realistic assumption, of equal average size of the metro units and the non-metro 
units, there is still a slight upward bias due to spatial aggregation that is apparent, with the 
elasticities from the spatially aggregated data centered around 0.15 (compared to elasticities 
centered on 0.13 coming from the micro-level data). However, there is a much less clear 
distinction between the micro-level elasticities and the aggregated elasticities because the 
distribution of the simulations for the (size-undifferentiated) aggregated units is so wide 
(spanning a range from 0.05 to 0.25) that it overlaps the entire distribution of the smoothed 
density function for the micro-level elasticities. 

A driving force for these inequalities in the growth elasticities is the differences in the sectoral 
elasticities, between the metro and the non-metro areas. In contrast, if 𝛼 ൌ 𝛽 equations (1) to (3) 
would not imply differences between the growth elasticities estimated at the micro-level and 
those estimated from the spatially aggregated data (irrespective of the value of n). This may 
initially seem to be a puzzle when considering empirical results for the United States reported 
below, where the sectoral elasticities are close to equal (being slightly larger for non-metro areas 



8 
 

than for metro areas), yet the spatial aggregation is associated with a downward bias in the 
growth elasticities. This apparent puzzle can be resolved once the contribution from the random 
part of the simulations is taken account of, which we explain using equations (4) to (6). 

 

If we use the previous expressions from equations (1) to (3), which considered the doubling over 
time of luminosity in each micro-level unit, but we now also add the random terms from each of 
the prediction equations, we obtain: 
 

 𝜑୫୧ୡ୰୭ ൌ
ଵ

୪୬ଶ
ሾ𝜃lnሺ1 ൅ 𝛼ሻ ൅ ሺ1 െ 𝜃ሻlnሺ1 ൅ 𝛽ሻሿ ൅ u     where   Eሺuሻ ൌ 0       (4) 

 

 𝜑ୟ୥୥୰ୣ୥ୟ୲ୣୢ ൌ
ଵ

୪୬ଶ
lnሾ𝜃ሺ1 ൅ 𝛼ሻ ൅ ሺ1 െ 𝜃ሻሺ1 ൅ 𝛽ሻ ൅ uሿ        (5) 

 

 𝜑ୟ୥୥୰ୣ୥ୟ୲ୣୢ,   ୱ୧୸ୣ ୢ୧୤୤ ൌ
ଵ

୪୬ଶ
lnሾ

୬ఏሺଵାఈሻାሺଵିఏሻሺଵାఉሻ

௡ఏାሺଵିఏሻ
൅ uሿ       (6) 

 

In equation (4), based on the within estimator of the elasticity estimated from micro-level units, 
the random error is added to the weighted average of the logged terms. In contrast, the errors are 
spatially aggregated and then the logarithm is taken in equations (5) and (6). Jensen’s inequality 
comes into play once again to create a wedge between the micro-level and spatially aggregated 
elasticities. This gives the ordering: 𝜑୫୧ୡ୰୭ ൐ 𝜑ୟ୥୥୰ୣ୥ୟ୲ୣୢ ൌ 𝜑ୟ୥୥୰ୣ୥ୟ୲ୣୢ,   ୱ୧୸ୣ ୢ୧୤୤, even if 𝛼 ൌ 𝛽 for 

0 .1 .2 .3 .4
GDP-luminosity elasticity (within estimator)

Micro-level

Spatially aggregated (size-diff for metro vs non-metro)

Spatially aggregated (no size diff for metro vs non-metro)

Figure B.1: Simulation results for metro/non-metro gap of 0.19 (matching the China case)



9 
 

any n. In other words, when the sectoral elasticities are the same, the spatial aggregation reduces 
the value of the GDP-luminosity growth elasticity due to the combined effect of the random 
terms and the non-linear aggregation. 

This ordering is shown in Figure B.2, with the simulation results for a setting like the United 
States where the metro elasticity is slightly smaller than the non-metro one (a gap of -0.03). The 
elasticity estimated from micro-level units is tightly bunched around a value of 0.2. In contrast, 
the elasticity estimated from the spatially aggregated data is centered on 0.15 (if there is no size 
differentiation between metro and non-metro – that is, 𝑛 ൌ 1), or around 0.08 if we allow the 
metro units to be larger, on average, than the non-metro units. 

 

To summarize these simulation results, the within estimator values of the GDP-luminosity 
elasticities are not invariant to spatial aggregation, contrary to the underlying assumption made 
by elasticity transfer studies such as those summarized in Appendix A. When micro-level data 
are spatially aggregated there can be significant shifts in the distribution of the elasticities – 
biased upwards when there is a large gap in sectoral elasticities (being greater for metro units 
than for non-metro units), and biased downwards when there is little (or even a negative) sectoral 
gap in the elasticities. Consequently, a GDP-luminosity elasticity that is estimated from spatially 
aggregated data will not be the appropriate elasticity to use when calculating the local economic 
growth impact of some treatment whose effects on luminosity have been estimated with spatially 
disaggregated data. 

0 .05 .1 .15 .2
GDP-luminosity elasticity (within estimator)

Micro-level

Spatially aggregated (size-diff for metro vs non-metro)

Spatially aggregated (no size diff for metro vs non-metro)

Figure B.2: Simulation results for metro/non-metro gap of -0.03 (matching the US case)
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Stata Code for the Main Simulations 

log using "C:\Current\Lights\Growth\Simulation\Table_B1.smcl" 
* Luminosity and local economic growth -- aggregation simulation 
* Chao Li 
* 21/February/2024 
* adding outer loop to Bonggeun's coding 
****************************************************** 
** for micro unit simulation, Col (4) of Table B.1  ** 
****************************************************** 
program define p4, eclass 
drop _all 
set obs 1000 
gen rank=_n 
gen u=0.1*invnorm(uniform()) 
gen lrank=ln(rank) 
gen size=10000000/(rank) 
gen x1=ln(size)+0.1*invnorm(uniform()) 
**dx is independent of size 
gen x2=x1+invnorm(uniform()) 
gen dx=x2-x1 
** two groups (urban vs non-urban) 
gen y1=10+(0.4-`0'/100)*x1 if rank<=100 
replace y1=10+(0.01+`0'/100)*x1 if rank>100  
gen y2=10+(0.4-`0'/100)*x2+u if rank<=100 
replace y2=10+(0.01+`0'/100)*x2+u if rank>100 
gen dy=y2-y1 
reg dy dx 
end 
forval i = 0(1)21 { 
clear 
di `i' 
simulate _b, reps(1000): p4 `i' 
sum _b_dx 
tempfile b4`i' 
keep _b_dx 
rename _b_dx b4`i' 
gen id=_n 
save `b4`i'', replace 
} 
* merge saved temps 
use `b40', clear 
forval i = 1(1)21 { 
merge 1:1 id using `b4`i'' 
drop _merge 
} 
* final results 
sum b4*, sep(0) 
clear 
*********************************************************** 
** for aggregated unit simulation, Col (6) of Table B.1  ** 
*********************************************************** 
program define p5, eclass 
drop _all 
set obs 1000 
gen rank=_n 
gen u=0.1*invnorm(uniform()) 
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gen lrank=ln(rank) 
gen size=10000000/(rank) 
gen x1=ln(size)+0.1*invnorm(uniform()) 
**dx is independent of size 
gen x2=x1+invnorm(uniform()) 
gen dx=x2-x1 
** two groups (urban vs non-urban) 
gen y1=10+(0.4-`0'/100)*x1 if rank<=100 
replace y1=10+(0.01+`0'/100)*x1 if rank>100  
gen y2=10+(0.4-`0'/100)*x2+u if rank<=100 
replace y2=10+(0.01+`0'/100)*x2+u if rank>100 
gen dy=y2-y1 
*** for aggregation 
for var y1 y2 x1 x2: gen X0=exp(X) 
gen agg=1 if rank==1 
forval i = 1(100)1000 { 
replace agg=1 if rank==`i'  
} 
forval i = 2(1)100 { 
replace agg=`i' if rank==`i' | rank==(100+`i')| rank==(200+`i')| 
rank==(300+`i')| rank==(400+`i')| rank==(500+`i')| rank==(600+`i')|  
rank==(700+`i')| rank==(800+`i')| rank==(900+`i') 
} 
collapse y10 y20 x10 x20, by(agg) 
for var y10 y20 x10 x20: gen lX=ln(X) 
gen dy=ly20-ly10 
gen dx=lx20-lx10 
reg dy dx 
end 
forval i = 0(1)21 { 
clear 
di `i' 
simulate _b, reps(1000): p5 `i' 
sum _b_dx 
tempfile b5`i' 
keep _b_dx 
rename _b_dx b5`i' 
gen id=_n 
save `b5`i'', replace 
} 
* merge saved temps 
use `b50', clear 
forval i = 1(1)21 { 
merge 1:1 id using `b5`i'' 
drop _merge 
} 
* final results 
sum b5*, sep(0) 
 
clear 
log close 
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C. GDP Database Construction 

C.1 China 

China’s general administrative hierarchy is province then prefecture; most prefectures further 
divide into counties for more rural areas or into districts for more urban areas. There are also 
county-level cities, that are distinct from the districts that make up the urban core of a prefecture, 
and some county-like units, such as banners. Prefecture names include the word ‘City’ even if 
most of the area is rural. For example, China’s Household Responsibility System that permitted 
own-account family farming to resume from 1978 reputedly originated in Xiaogang village of 
Fengyang County, within Chuzhou City of Anhui Province. Xiaogang remains a decidedly rural 
area today yet is administered as part of a ‘City’. In other words, ‘City’ in China’s sub-national 
statistics is an administrative designation not a functional economic unit like a metropolitan 
statistical area in other countries. Moreover, parts of western China and a few other areas are not 
organized into prefectures underneath provinces and instead their 2nd level spatial units are either 
Leagues, Autonomous regions or Provincially Administered areas. Some of the non-prefectural 
areas eventually get upgraded to prefectural status so this division between the great majority of 
the country that is organized into prefectures and the remainder changes over time.1  

These administrative details matter because there is no single unified source of data on China’s 
sub-national GDP. Instead, there are different sources of data for the various spatial levels, with 
at least three types of publications from the National Bureau of Statistics (NBS) needed to build 
our database: the annual editions of the China Statistical Yearbook (county-level) (in Chinese it 
is Zhongguo Xianyu Tongji Nianjian (Xianshi Juan)), annual editions of the China City 
Statistical Yearbook (known in Chinese as Zhongguo Chengshi Tongji Nianjian), and annual 
editions of the Statistical Yearbook for each city or province (for example the Beijing Statistical 
Yearbook) (NBS, various dates). Each edition reports on GDP the previous year, so we use the 
2001 to 2020 editions to obtain annual GDP data from 2000 to 2019. In addition we also needed 
to use the district-level local government economic communiques to get GDP data in some years 
for some of the areas that had recently been upgraded to district status. 

The parts of China not organized into prefectures are not covered by the China City Statistical 
Yearbooks (given that they are not considered as a City) and are not always covered in the other 
sources like county yearbooks and the yearbooks issued by each province. In the 2020 census, 
96.7% of China’s resident population was included in the areas covered by the spatial units that 
we use. Areas not covered are shown in Figure C.1. Given that these non-prefectural areas are 
typically poorer than average the share of sub-national GDP covered by our sample is likely to 
be higher than the share of population covered; thus, our results can be thought of as pertaining 
to at least 97% of China’s sub-national GDP. 

 
1 Chung and Lam (2004) provide some details on the variety of urban administrative units in China, with multiple 
examples of units being merged, split, reformed, upgraded and sometimes downgraded.  
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Fig C.1: China’s sub-national spatial units used for the analysis  

The second complication with China’s sub-national data is that the administrative units can be 
reorganized according to the changing aims of the national government (the State Council). 
Usually the reorganization is for counties or county-level cities to be upgraded (and occasionally 
downgraded); since 2000, over 200 counties and county-level cities were upgraded to district 
status. This change in status can affect where the GDP data are reported (e.g. it may no longer be 
reported in the provincial yearbooks that provide county-by-county statistics). A related issue 
with these organizational changes is merging units; for example, Nanhui County was upgraded to 
district status and then in 2009 merged with Pudong District to form the Pudong New Area. 
Consequently, any GDP time-series that we could construct for Nanhui would end in 2008. In 
order to have a balanced panel, when any of the administrative areas are subsequently merged we 
also enforce the same aggregation on the earlier years to have a consistent 2000-19 time-series 
for each spatial unit. Relatedly, the established districts (i.e. not the ones that had been recently 
upgraded from county or county-level city status) that are adjacent to each other in the urban 
core of each prefecture are treated as one unit that is functionally the same city. For example, the 
night lights data show no gap between Xicheng and Dongcheng, the two innermost districts of 
Beijing that are almost entirely inside the 3rd Ring Road. In contrast, Beijing’s five districts that 
were recently upgraded from county status are separately distinguished because each of these 
former counties has its own distinct urban core surrounded by a largely rural hinterland. 



14 
 

Overall, we have annual GDP data for each of n=2342 units at the 3rd level of the sub-national 
administrative hierarchy, where these units maintain a consistent spatial definition from 2000 to 
2019. We additionally classify these units into either the urban core of the 2nd level unit that 
administers them or into the remaining areas. For established prefectures, the urban core is usually 
the merged area of districts in existence prior to 2000 (as opposed to counties recently upgraded 
to district status) while for recently established prefectures the urban core had typically been either 
a county-level city or a county prior to being upgraded to district status. Given the diversity of 
administrative units, we refer to urban cores (n=297) and the other 3rd level units (n=2045) are 
called non-metro areas. In the 2020 census there were 485 million people residing in the urban 
core areas, and about 880 million in the remaining areas, giving population densities of almost 700 
persons per square kilometer in the urban cores and 100 per square kilometer in the non-metro 
areas (the national average is 150 per square kilometer). Some urban cores in provinces such as 
Xinjiang, Heilongjiang, and Tibet cover large areas (see Figure C.1), so population density of the 
urban cores in other more populous provinces is far higher than 700 per square kilometer. 

C.2 Indonesia 

The GDP data are from the Indonesian government’s Central Bureau of Statistics (Badan Pusat 
Statistik or BPS for short) which provides annual estimates of Gross Regional Domestic Product 
(GRDP). The data that we use are in spatially and temporally real terms and have a 2010 base. The 
BPS calculate and report these GRDP figures at both the provincial level, and at the next level 
down in the administrative hierarchy, where this second level in the sub-national geography is 
either Regencies (also known as Kabupaten) or else Cities (also known as Kota). All parts of 
Indonesia are classified as either part of a Regency or part of a City (compared to the more 
complicated situation of only partial and time-varying coverage that affected the data for China). 
Previous comparisons of these GRDP data (we will often refer to them as GDP data for simplicity) 
with household survey estimates of consumption and labour force survey estimates of total 
employment and total wages at the second sub-national level show high degrees of agreement 
(Gibson et al, 2021). 

For the decomposition into metropolitan or non-metropolitan areas we rely on the existing 
classification of second-level units as either City or Regency. In the 2010 census the n=98 units 
designated as City covered just under 30,000 square kilometers and had a population of 52 million, 
giving an average density of 1900 per square kilometer. The 399 unites that were classified as 
Regencies had a population of 185 million, distributed over about 1.9 million square kilometers, 
with an average population density of 95 per square kilometer. In other words, the non-metro areas 
have a population density similar to the non-metro areas of China but the metropolitan areas are 
more densely populated. The second sub-national level units, along with their designation as urban 
core or not, and the province boundaries are shown in Figure C.2. 

To control for the splitting of regencies (or of cities), going forward from 2010 we re-aggregate 
back into the original spatial unit. In a few cases prior to 2010 we had to do the reverse, where one 
spatial unit had subsequently split we use the post-2010 fractions of GDP for the combined unit to 
disaggregate, in order to have a strongly balanced panel that extended from 2004 to 2019. 
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Fig C.2: Indonesia’s sub-national spatial units used for the analysis 

C.3 United States 

The county-level GDP data for the United States are from the Bureau of Economic Analysis (BEA) 
available at the following link: https://www.bea.gov/data/gdp/gdp-county-metro-and-other-areas. 
We use the chained series in 2012 dollars. The annual estimates are provided separately for each 
county for the 2001 to 2019 period, with three broad exceptions. In Alaska the BEA combine some 
census areas in their reporting, and in Hawaii they combine Maui and Kalawao counties. It is for 
Virginia that the greatest amount of adjustment occurs; the BEA create 23 combination areas where 
one or two independent cities whose population in the 1980 census was less than 100,000 are 
combined with an adjacent county. The dissolve function in ArcGIS was used to modify a county-
level shapefile so as to match these combination areas. There are n=3109 counties and combination 
areas (we refer to all of these as county-level units) with data available in each year. In comparison 
to China and Indonesia, the spatial definitions of counties in the United States are far more stable 
over time and so we do not need to do any merging of the county-level units to create a consistent 
time-series. 

To classify county-level units as either urban cores or non-metropolitan we use the National Center 
for Health Statistics (NCHS) urban-rural classification scheme for counties (2013 edition) 
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available at the following link: https://www.cdc.gov/nchs/data_access/urban_rural.htm. This has 
six groups of counties based on the population of the metropolitan statistical area (MSA) that the 
county may be associated with, and the centrality of that county to the MSA. We classify the core 
urban counties as those that are central metro counties in an MSA of 1 million population or greater 
that either contain the entire population of the largest principal city of the MSA or are completely 
contained within the largest principal city of the MSA, and those that are large fringe metro 
counties in an MSA of 1 million or more population. There are 426 of these urban cores, and the 
remaining 2683 county-level units are classified as non-metropolitan. In the 2010 census the urban 
cores had a combined population of 170 million (occupying 0.8 million square kilometers) and the 
non-metropolitan areas had a population of 139 million spread over 8.5 million square kilometers. 
The average population density in the urban cores was 480 persons per square kilometer and in the 
non-metropolitan areas was 30 persons per square kilometer. The county-level units, along with 
their designation as urban core or not, and the state boundaries are shown in Figure C.3. 

 

Fig C.3: United States spatial units used for the analysis (Alaska and Hawaii not to scale) 

D. Night-time Lights Database Construction 

Our database of night-time lights (NTL) is assembled from three sources. The first is annual 
composites from Defense Meteorological Satellite Program (DMSP) satellites F14, F15, F16 and 
F18 which cover each year from 2000 to 2019 (some years have two satellites providing data). The 
stable lights product provides 6-bit digital numbers (DN) ranging from 0–63 (with higher values 
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indicting greater luminosity) for each 30 arc-second output pixel. Ephemeral lights such as from 
fires and flaring are removed, and processing excludes (at pixel level) images for nights affected 
by clouds, moonlight, sunlight, and other glare. The most widely used stable lights product 
described by Baugh et al (2010) had a time-series that ended in 2013 but that has now been 
extended with images from F15 and F16 from 2013 onwards (Ghosh et al, 2021). The extended 
series observes earth in the early hours of the morning, exploiting an unstable DMSP orbit whereby 
what started out as early evening observation became instead a late afternoon observation as the 
satellites aged; while late afternoon was not useful for studying night-time lights, the 12 hour 
revisit time provides a pre-dawn observation time which Ghosh et al (2021) used to extend the 
DMSP time-series. This switch in observation time, along with other inter-satellite differences 
such as due to sensor degradation over time, are controlled for by using satellite and year fixed 
effects (along with spatial fixed effects in all estimation results).  

The second set of night-time lights data is version 2.1 VIIRS nighttime lights (VNL V2.1) annual 
composites from 2012 to 2019. The VNL V2.1 data are produced by Elvidge et al (2021) by using 
monthly cloud-free radiance averages coming from the Suomi/NPP satellite. These data undergo 
an initial filtering to remove extraneous features such as fires and aurora before the resulting rough 
annual composites are subjected to further outlier removal procedures. The lit grid cells are isolated 
from back-ground noise using thresholds that apply across years, making these data better for 
change detection than earlier vintages of VIIRS data (Elvidge et al, 2017) that used year-specific 
thresholds (which made it harder to see if different average radiance values between years were 
due to on-the-ground changes or to differences in the thresholds). The data are in units of nano 
Watts per square centimeter per steradian (nW/cm2/sr) presented on a 15 arc-second output grid. 

The third source of NTL data is the NASA Black Marble annual composites (Román et al, 2018), 
which are derived from the same satellite as the VNL data but are processed in a different way. 
The Black Marble data use a bi-directional reflectance distributional function (BRDF) to remove 
the effects of extraneous artefacts, and the processing steps also remove cloud-contaminated pixels. 
The data products are corrected for atmospheric, terrain, vegetation, snow, lunar, and stray light 
effects on the radiance values, which are calibrated across time and also validated against ground 
measurements. The data are in units of nano Watts per square centimeter per steradian (nW/cm2/sr) 
and are reported with 16-bit precision on a 15 arc-second output grid. We use the all-angle 
composites, which use the greatest number of nights per year, compared to either the near-nadir 
(view zenith angle of 0-20 degrees) composites or the off-nadir (view zenith angle of 40-60 degrees) 
composites which are composed from fewer nights per year. A feature of the Black Marble data is 
that separate estimates for snow-free and snow-covered periods are provided, noting that snow has 
difference reflectance properties to usual land cover. This does not matter for Indonesia, given its 
equatorial location, but parts of China and the United States are snow covered on more than one-
tenth of cloud-free nights. For these two countries we therefore use a weighted-average of the 
snow-free and snow-covered composites, where the weights are the number of snow-free nights 
and snow-covered nights per year for each pixel. This weighted average should better capture 
variation across the entire year, in the same manner that annual GDP aggregates over economic 
activity in all of the seasons of the year. This weighted average has been shown to better predict 
sub-national GDP compared to just using the snow-free composites (Zhang and Gibson, 2022). 
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The VNL V2.1 and Black Marble annual composites are expected to be more accurate measures 
of true luminosity than are the DMSP annual composites. At nadir the sensor on the Suomi/NPP 
satellite has 45-times greater spatial precision than the DMSP sensor. This advantage in terms of 
spatial precision is illustrated in Figure D.1, which is reproduced from Elvidge et al (2013). The 
spatial precision advantage of data based on the Suomi/NPP satellite, as opposed to data coming 
from the DMSP platform, should be even greater away from the nadir because of the problem of 
an expanded ground footprint for the parts of the earth viewed at an angle. This issue, along with 
pixel aggregation due to limited data storage on DMSP satellites, and various geo-location errors 
(Tuttle et al, 2013) contribute to the well-known blurring problem in DMSP data (Abrahams et al, 
2018). In contrast, there are no known blurring problems in the VNL V2.1 and Black Marble data. 

 

Fig D.1: Comparison of ground footprint at nadir of sensors on DMSP and Suomi/NPP satellites 

In addition to greater spatial precision of data coming from the VNL V2.1 and Black Marble annual 
composites, there are three other reasons why these should be more accurate indicators of true 
luminosity than are the DMSP data. First, top-coding of DMSP data limits the apparent brightness 
of urban areas (Bluhm and Krause, 2022) while no similar problems affect VNL V2.1 and Black 
Marble data. Second, sensors on the Suomi/NPP satellites have dynamic range of seven orders of 
radiance magnitude while DMSP covers only two orders of magnitude, so DMSP sensors cannot 
simultaneously detect dimly-lit and brightly-lit areas. Hence, DMSP has relatively coarse 6-bit 
digital numbers, with just 64 values available (0-63) while the VNL has 14-bit precision (16,384 
possible values) and Black Marble has 16-bit precision (65,536 distinct values).  
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Fig D.2: Average number of nights used when composing the annual composites 

0

50

100

150

200

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

N
ig

ht
s p

er
 a

nn
ua

l c
om

po
sit

e 
(a

ve
ra

ge
)

China

DMSP_F14 DMSP_F15 DMSP_F16

DMSP_F18 VNL V2.1 Black Marble

0

20

40

60

80

100

120

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

N
ig

ht
s p

er
 a

nn
ua

l c
om

po
sit

e 
(a

ve
ra

ge
)

Indonesia

DMSP_F14 DMSP_F15 DMSP_F16

DMSP_F18 VNL V2.1 Black Marble

0

50

100

150

200

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019

N
ig

ht
s p

er
 a

nn
ua

l c
om

po
sit

e 
(a

ve
ra

ge
)

United States

DMSP_F14 DMSP_F15 DMSP_F16

DMSP_F18 VNL V2.1 Black Marble



20 
 

The third source of accuracy for Black Marble and VNL V2.1 over DMSP as a proxy for annual 
economic activity comes from their incorporation of images from far more nights of the year when 
composing their annual composites. Figure D.2 shows the average number of nights (calculated 
from the pixel level data) that are used per satellite-year for the three countries we study. While 
the DMSP composites are based on about 50 nights per year in China, the VNL V2.1 composites 
are based on around 100 nights per year and the Black Marble ones on 150 nights per year. All 
else the same, a better representation of annual economic activity should come from a sensor that 
is using data from almost one-half of the nights every year, compared to one that uses just one-
seventh of the nights each year. 

The annual composites for Indonesia rely on fewer nights per year than for China, but the ranking 
of the three sources is the same. On average, the DMSP composites are based on 43 nights per 
year, the VNL V2.1 composites are based on 51 nights per year and the Black Marble composites 
use 82 nights per year. These averages hide some temporal variation, with both VNL and Black 
Marble composites in 2015 based on almost twice as many nights as the composites in earlier years. 
A possible cause of this variation is the El Nino weather pattern, where rain that is usually centered 
over Indonesia shifts eastward into the central Pacific, resulting in more cloud-free nights for parts 
of Indonesia in El Nino years such as 2015. 

The difference between the night lights data sources in the number of nights per year used for their 
annual composites is even larger for the United States, which on average is less cloudy than either 
China or Indonesia. The Black Marble composites are based on an average of 155 nights per year, 
the VNL composites on 130 nights, and the DMSP composites are drawn from just 45 nights, on 
average. Across the three countries, it is clear that there is considerably better temporal coverage 
of annual economic activity with the Black Marble data compared to the DMSP data, with almost 
three-times as many nights used to form the composites (ca. 130 nights for Black Marble versus 
46 nights for DMSP). The VNL composites are based on about twice as many nights as the DMSP 
ones so at least in terms of annual comprehensiveness, we would rank the three NTL sources as 
Black Marble as most comprehensive, then VNL, and DMSP last. 
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E. Descriptive Statistics 
 

Table E.1: Descriptive Statistics for China 

 2000-11  2012-19 
 Mean Std Dev Trend  Mean Std Dev Trend 

All county-level units        

GDP 4.27 1.42 14.88**  5.58 1.28 6.45** 

DMSP 9.03 1.64 3.59**  9.10 1.52 6.21** 

VNL n.a. n.a. n.a.  8.62 1.35 8.18** 

Black Marble n.a. n.a. n.a.  11.11 1.35 3.97** 

Urban core counties        

GDP 5.78 1.31 15.70**  7.04 1.16 6.87** 

DMSP 10.33 0.94 2.89**  10.48 0.91 4.11** 

VNL n.a. n.a. n.a.  10.30 1.05 6.11** 

Black Marble n.a. n.a. n.a.  12.77 1.04 4.86** 

Non-metro counties        

GDP 4.05 1.30 14.76**  5.36 1.15 6.39** 

DMSP 8.84 1.64 3.69**  8.90 1.48 6.52** 

VNL n.a. n.a. n.a.  8.38 1.21 8.48** 

Black Marble n.a. n.a. n.a.  10.86 1.21 3.84** 

Provinces        

GDP 9.15 1.19 15.40**  10.45 0.99 6.69** 

DMSP 13.80 0.96 2.77**  13.92 0.84 4.44** 

VNL n.a. n.a. n.a.  13.66 0.79 6.05** 

Black Marble n.a. n.a. n.a.  16.13 0.78 4.12** 
        

Notes: All variables are in logs (inverse hyperbolic sine). The trend is the percentage annual growth rate from a regression of the logarithm on a time trend 
(and on satellite dummies were appropriate). The ** and * denote trends that are statistically significantly different from zero at p<0.01 and p<0.05. 
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Table E.2: Descriptive Statistics for Indonesia 

 2004-11  2012-19 
 Mean Std Dev Trend  Mean Std Dev Trend 

All district-level units        

GDP 8.59 1.26 2.50*  8.96 1.26 5.26** 
DMSP 7.73 2.42 -0.22  7.85 2.26 7.50** 
VNL n.a. n.a. n.a.  7.39 2.12 13.86** 
Black Marble n.a. n.a. n.a.  10.17 1.78 5.81** 

Urban cores (Kota)        

GDP 8.98 1.46 4.32  9.44 1.43 5.58* 
DMSP 8.46 1.16 3.27  8.61 1.09 3.92* 
VNL n.a. n.a. n.a.  8.42 1.30 7.96** 
Black Marble n.a. n.a. n.a.  10.95 1.24 5.15** 

Non-metro (Kabupaten)       
GDP 8.49 1.18 2.10  8.84 1.18 5.18** 
DMSP 7.55 2.61 -0.10  7.66 2.42 8.38** 
VNL n.a. n.a. n.a.  7.13 2.20 15.31** 
Black Marble n.a. n.a. n.a.  9.97 1.84 5.97** 

Provinces        

GDP 11.25 1.33 5.47  11.74 1.26 5.36 
DMSP 10.19 1.46 -0.83  10.23 1.46 6.14 
VNL n.a. n.a. n.a.  9.82 1.49 10.78** 
Black Marble n.a. n.a. n.a.  12.42 1.47 5.89 
        

Notes: All variables are in logs (inverse hyperbolic sine). The trend is the percentage annual growth rate from a regression of the logarithm on a time trend 
(and on satellite dummies where appropriate). The ** and * denote trends that are statistically significantly different from zero at p<0.01 and p<0.05. Sample 
sizes are reported in Table 2. 
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Table E.3: Descriptive Statistics for the United States 

 2001-11  2012-19 
 Mean Std Dev Trend  Mean Std Dev Trend 

All counties        

GDP 13.80 1.58 2.09**  13.93 1.57 1.35** 
DMSP 10.00 1.19 -2.62**  9.76 1.24 -0.45** 
VNL n.a. n.a. n.a.  9.20 1.39 -0.22** 
Black Marble n.a. n.a. n.a.  11.59 1.45 -2.76** 

Counties in urban cores       
GDP 15.43 1.83 2.25**  15.58 1.85 2.32** 
DMSP 11.02 0.99 -1.23**  10.80 1.05 -0.38** 
VNL n.a. n.a. n.a.  10.58 1.41 -0.16** 
Black Marble n.a. n.a. n.a.  13.00 1.39 -1.43** 

Non-metro counties       
GDP 13.54 1.36 2.07**  13.67 1.35 1.20** 
DMSP 9.84 1.14 -2.84**  9.60 1.18 -0.47** 
VNL n.a. n.a. n.a.  8.98 1.26 -0.23** 
Black Marble n.a. n.a. n.a.  11.37 1.33 -2.98** 

States        

GDP 18.97 1.02 2.09**  19.11 1.03 1.89** 
DMSP 13.67 1.03 -1.36**  13.46 1.04 -0.14 
VNL n.a. n.a. n.a.  14.62 1.03 -0.23 
Black Marble n.a. n.a. n.a.  17.06 1.09 -0.88** 
        

Notes: All variables are in logs (inverse hyperbolic sine). The trend is the percentage annual growth rate from a regression of the logarithm on a time trend 
(and on satellite dummies where appropriate). The ** and * denote trends that are statistically significantly different from zero at p<0.01 and p<0.05. Sample 
sizes are reported in Table 3. 
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F. Measurement Error Adjustments 

To mitigate effects of measurement error in luminosity estimates, in case these contribute to 
the aggregation-sensitivity of GDP-luminosity elasticities that we find, we use Black Marble 
(BM) estimates as instrumental variables when estimating equation (3) in the main text: 

𝑧௝௧ ൌ 𝜓𝑥௝௧ ൅ 𝑢௝௧     (3) 

where 𝑧௝௧ is observed GDP and 𝑥௝௧ is observed luminosity. The BM estimates are highly 
correlated with the potentially mis-measured luminosity estimates, with first-stage F statistics 
over 600 in some cases. Any error in BM estimates (noting they should have the least error, 
due to sensor properties and data processing, as discussed in Appendix D, and from results of 
Zhang and Gibson (2022) where models with BM data are closer to truth than models using 
other luminosity estimates, according to Vuong (1989) tests) should not correlate with errors 
in DMSP or VNL data. Recently, two other IV strategies have been used for potentially 
mismeasured luminosity data: Chor and Li (2024) and Kim et al. (2023) use a 1-year lag of 
annual VNL composites to instrument for VNL data, in estimates at prefectural and county 
level in China, while Beyer et al. (2022) use the count of nights providing the images used for 
the composites, in a cross-country study. Instrumenting with lags assumes there is no serial 
correlation in measurement errors for luminosity, but there are at least two reasons to doubt 
this: North-South patterns in missing data due to summer glare (Gibson, 2021) and errors 
from not adjusting for snow cover (Zhang and Gibson, 2022). Both of these features will tend 
to affect the same areas each year, inducing a serial correlation in the measurement errors. 
The number of nights used for the composites will also proxy for geographic factors that alter 
the amount of annual cloud cover (Gibson et al, 2020). These geographic factors are likely to 
directly affect economic activity, and rainfall fluctuations are also linked to economic growth 
(Barrios et al., 2010). Indeed, rainfall is a widely used instrumental variable for economic 
growth. These additional pathways would tend to violate the exclusion restrictions needed for 
the number of nights providing the images to be a valid instrumental variable where the only 
path of effect on economic growth is via the quality of the luminosity signal. 

Table F.1 has county-level and province-level results for China from our IV approach, for the 
2012-19 annual sum of lights. The estimates can be compared with OLS estimates in Table 1 
of the main text. Column (1) shows the mean-reversion in the DMSP estimates; the elasticity 
of DMSP with respect to BM is 0.51 at the county level and 0.29 at the province level. The 
assumption of random errors requires an elasticity of 1.0 when the mis-measured variable is 
regressed on the true(r) variable: 𝑙𝑛𝑥஽ெௌ௉,௝௧ ൌ 𝜃 ൅ 𝜆𝑙𝑛𝑥஻ெ,௝௧ ൅ 𝑣௝௧. This shows that a second 
adjustment is needed, with the IV estimate of the elasticity of GDP with respect to DMSP 
luminosity scaled to account for attenuating effects of the mean-reverting measurement error 
in DMSP data (given that IV is consistent only for random errors). Column (2) has the 
estimates of the instrumental variables elasticities, adjusted for mean-reversion (MRA-IV), 
which are 0.12 at the county level and 0.44 at the province level, giving a province-to-county 
ratio of 3.7 (as compared to the ratio of 8.4 estimated using OLS in Table 1 in the main text).2 

 
2 Results using DMSP data (columns (1) and (2)) control for fixed effects for year, for county or province, and 
for satellite (reasons for using satellite fixed effects instead of averaging data from two DMSP satellites in years 
with two satellites providing readings are discussed in Gibson et al., 2020. Satellite fixed effects were also used 
by Chen and Nordhaus (2011) in their first study using luminosity to proxy for economic activity statistics). So 
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Table F.1: IV estimates of GDP-luminosity elasticities for China, 2012-2019 
Relationship estimated: DMSP-BM GDP-DMSP GDP-VNL 

 Mean-reversion test MRA-IV IV 
 (1) (2) (3) 

 County-level 
ln(sum of lights) 0.507 0.117 0.173 
 (0.035) (0.022) (0.017) 
Number of observations 30446 30446 18736 
First-stage F statistic n.a. 207.51 643.23 
R-squared (Within) 0.076 0.028 0.028 

 Province-level 
ln(sum of lights) 0.291 0.437 0.549 
 (0.213) (0.969) (0.356) 
Number of observations 403 403 248 
First-stage F statistic n.a. 1.87 10.47 
R-squared (Within) 0.038 0.079 0.079 

Province-to-county elasticity ratio 3.7 3.2 

Notes: Clustered standard errors in ( ). MRA-IV is Mean-Reverting-Adjusted IV. 
 
The results in column (3) use VNL data as the potentially mis-measured luminosity variable, 
with the BM estimates as the instrumental variable. There is no known mean-reversion issue 
with VNL estimates so an adjustment for mean-reverting error is not carried out and it is just 
a standard instrumental variables estimate in column (3). The GDP-luminosity elasticities are 
0.17 at county level and 0.55 at province level, which then gives a province-to-county ratio of 
3.2 (compared to the ratio of 3.6 estimated using OLS in Table 1 in the main text). Thus, the 
pattern of aggregation-sensitivity of the GDP-luminosity elasticities persists, even if using the 
less error-prone VNL estimates and an instrumental variables framework that should further 
mitigate any measurement error concerns. Notably, the fact that switching the estimator from 
OLS to IV only slightly changes the province-to-county elasticity ratio (from 3.6 to 3.2) when 
using VNL estimates but had a larger effect when using DMSP estimates (from 8.4 to 3.7) is 
indirect evidence that the VNL estimates are less plagued by measurement error than are the 
DMSP estimates. 

Table F.2 has the county-level and state-level results for the United States, which can be 
compared with the OLS results in Table 3 of the main text. The degree of mean-reversion in 
the DMSP estimates is seen from the elasticity of DMSP with respect to BM being 0.52 at the 
county level and 0.66 at the state level. Using DMSP data with the MRA-IV estimator yields 
GDP-luminosity elasticities of 0.20 at the county level and 0.05 at the state level, so just as 
with the OLS results in Table 3, spatial aggregation lowers the GDP-luminosity elasticity 
estimates for the United States. When the VNL data are used, the results in column (3) show 
that the GDP-luminosity elasticity is 0.44 at the county level and 0.07 at the state level and so 
the state-to-county ratio is 0.2 when using measurement error mitigation approaches applied 
to either the DMSP estimates or the VNL estimates. So our main results, of a downward bias 
when there is spatial aggregation with US data and an upward bias for China, still hold. 

 
the unit of observation is the satellite-area-year triplet. To not overweight years with two satellites providing 
data, observations are given a weight of 0.5 (while they are weighted 1.0 for the years with only one satellite in 
operation). Satellite fixed effects are not needed for VIIRS, so there are fewer observations in column (3), where 
area-year doublets are used rather than the satellite-area-year triplets in columns (1) and (2).  
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Table F.2: IV estimates of GDP-luminosity elasticities for the United States, 2012-2019 
Relationship estimated: DMSP-BM GDP-DMSP GDP-VNL 

 Mean-reversion test MRA-IV IV 
 (1) (2) (3) 

 County-level 
ln(sum of lights) 0.517 0.202 0.442 
 (0.036) (0.050) (0.057) 
Number of observations 40417 40417 24872 
First-stage F statistic n.a. 202.34 151.98 
R-squared (Within) 0.089 0.070 0.070 

 State-level 
ln(sum of lights) 0.656 0.045 0.068 
 (0.144) (0.116) (0.115) 
Number of observations 663 663 408 
First-stage F statistic n.a. 20.71 14.43 
R-squared (Within) 0.121 0.006 0.006 

Province-to-county elasticity ratio 0.2 0.2 
Notes: Clustered standard errors in ( ). MRA-IV is Mean-Reverting-Adjusted IV. 

Finally, we show that even with the IV strategy of Kim et al. (2023) and Chor and Li (2024), 
where a 1-year lag of VNL luminosity is used as the instrument, our main findings regarding 
the aggregation-sensitivity of GDP-luminosity estimates still hold. The results in Table F.3 
show that the province-to-county ratio of elasticities is 4.0 for China, while the corresponding 
ratio of state-to-county elasticities is 0.4 for the US. Even though we argue that using lagged 
luminosity as the instrumental variable is less valid than our strategy of using the accurate 
BM luminosity estimates as the instrument, for mitigating effects of any measurement errors 
in luminosity estimates, spatial aggregation still has the same effect (which is also the same 
effect as in the OLS results)—inflating the GDP-luminosity elasticity for China and reducing 
it for the United States. Hence, aggregation-sensitivity of the GDP-luminosity elasticities is 
unlikely to be due to the effects of any measurement error in luminosity estimates. 

Table F.3: Using lagged VNL annual composites as the instrumental variable for estimating 
GDP-luminosity elasticities for China and the United States, 2012-2019 

  China United States 
    

  County-level County-level 
ln(sum of lights)  0.283 0.298 
  (0.017) (0.055) 
Number of observations  16394 21763 
First-stage F statistic  4046.30 457.50 
R-squared (Within)  0.061 0.040 

  Province-level State-level 
ln(sum of lights)  1.138 0.128 
  (0.202) (0.066) 
Number of observations  207 357 
First-stage F statistic  20.71 40.74 
R-squared (Within)  0.297 0.023 

Province (or State)-to-county elasticity ratio 4.0 0.4 
Notes: Clustered standard errors in ( ). 
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